Although acute renal failure (ARF) has been an area of extensive research in recent decades, our understanding of ARF is far from complete. Organic cations (OCs) are primarily excreted via vectorial transport by various renal organic cation transporters (OCTs). It is reasonable to assume that ARF may alter the expression profiles of these transporters. In a rat ARF model, induction of ARF by uranyl nitrate (UN) treatment significantly decreased the levels of Oct2 (slc22a2) mRNA and protein in the kidney medulla. mRNA expression of the other OCTs was not appreciably altered. The plasma level of testosterone, a well-known regulator of Oct2, was not changed, suggesting that the Oct2 down-regulation is testosterone-independent. The effect of reduced Oct2 expression on the distribution of a model OC, tetraethylammonium (TEA), in various rat tissues including kidney cortex and kidney medulla was investigated during steady state plasma TEA concentrations. The steady state tissue-to-plasma (T/P) TEA ratio was decreased in the kidney medulla (approximately 15-fold) during ARF. These results indicate that, in a rat model of ARF, reduced Oct2 expression in the kidney medulla results in decreased distribution of TEA to the kidney medulla, thereby reducing renal clearance of TEA in UN-ARF rats.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.21442DOI Listing

Publication Analysis

Top Keywords

kidney medulla
24
rat model
8
acute renal
8
renal failure
8
distribution model
8
organic cation
8
reduced oct2
8
oct2 expression
8
steady state
8
kidney
7

Similar Publications

Urinary obstruction causes injury to the renal medulla, impairing the ability to concentrate urine, and increasing the risk of progressive kidney disease. However, the regenerative capacity of the renal medulla after reversal of obstruction is poorly understood. To investigate this, we developed a mouse model of reversible urinary obstruction.

View Article and Find Full Text PDF

Purpose: We hypothesized that radiation-induced tubulointerstitial changes in the kidney can be assessed using MRI-based T relaxation time measurements.

Methods: We performed MRI, histology, and serum biochemistry in two mouse models of radiation nephropathy: one involving external beam radiotherapy and the other using internal irradiation with an α-particle-emitting actinium-225 radiolabeled antibody. We compared the mean T values of different renal compartments between control and external beam radiotherapy or α-particle-emitting actinium-225 radiolabeled antibody-treated groups and between the two radiation-treated groups using a Wilcoxon rank-sum test.

View Article and Find Full Text PDF

Multiparametric MRI is a promising technique for noninvasive structural and functional imaging of the kidneys that is gaining increasing importance in clinical research. Still, there are no standardized recommendations for analyzing the acquired images and there is a need to further evaluate the accuracy and repeatability of currently recommended MRI parameters. The aim of the study was to evaluate the test-retest repeatability of functional renal MRI parameters using different image analysis strategies.

View Article and Find Full Text PDF

Objective: Elevated systolic blood pressure and increased pulse pressure are closely associated with renal damage; however, the exact mechanism remains unclear. Therefore, we investigated the effects of increased pulse pressure on tubulointerstitial fibrosis and renal damage in elderly rats with isolated systolic hypertension (ISH). Additionally, the role of renal tubular epithelial-mesenchymal transition (EMT) and its upstream signalling pathways were elucidated.

View Article and Find Full Text PDF

Insight into distribution and composition of nonhuman N-Glycans in mammalian organs via MALDI-TOF and MALDI-MSI.

Carbohydr Polym

March 2025

Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:

The major hurdle of xenotransplantation is the immune response triggered by human natural antibodies interacting with carbohydrate antigens on the transplanted animal organ. Specifically, terminal glycoprotein motifs such as galactose-α1,3-galactose (α-Gal) and N-glycolylneuraminic acid (Neu5Gc) are significant obstacles. Little is known about the abundance and compositions of asparagine-linked complex carbohydrates (N-glycans) carrying these motifs in mammalian organs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!