Critical role of notch signaling in osteosarcoma invasion and metastasis.

Clin Cancer Res

Department of Pediatrics Research, Children's Cancer Hospital, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.

Published: May 2008

Purpose: Notch signaling is an important mediator of growth and survival in several cancer types, with Notch pathway genes functioning as oncogenes or tumor suppressors in different cancers. However, the role of Notch in osteosarcoma is unknown.

Experimental Design: We assessed the expression of Notch pathway genes in human osteosarcoma cell lines and patient samples. We then used pharmacologic and retroviral manipulation of the Notch pathway and studied the effect on osteosarcoma cell proliferation, survival, anchorage-independent growth, invasion, and metastasis in vitro and in vivo.

Results: Notch pathway genes, including Notch ligand DLL1, Notch1 and Notch2, and the Notch target gene HES1, were expressed in osteosarcoma cells, and expression of HES1 was associated with invasive and metastatic potential. Blockade of Notch pathway signaling with a small molecule inhibitor of gamma secretase eliminated invasion in Matrigel without affecting cell proliferation, survival, or anchorage-independent growth. Manipulation of Notch and HES1 signaling showed a crucial role for HES1 in osteosarcoma invasiveness and metastasis in vivo.

Conclusion: These studies identify a new invasion and metastasis-regulating pathway in osteosarcoma and define a novel function for the Notch pathway: regulation of metastasis. Because the Notch pathway can be inhibited pharmacologically, these findings point toward possible new treatments to reduce invasion and metastasis in osteosarcoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2830718PMC
http://dx.doi.org/10.1158/1078-0432.CCR-07-1992DOI Listing

Publication Analysis

Top Keywords

notch pathway
28
notch
13
invasion metastasis
12
pathway genes
12
role notch
8
notch signaling
8
osteosarcoma
8
pathway
8
osteosarcoma cell
8
manipulation notch
8

Similar Publications

Acquired immunodeficiency syndrome is a systemic infectious disease caused by human immunodeficiency virus infection, which could attack the bones and heart. However, the relationship between Nuclear Complex Associated 3 Homolog (NOC3L) and DEAD box helicase 17 (DDX17) and acquired immunodeficiency complicated with viral myocarditis and osteoporosis is unclear. The acquired immune deficiency dataset GSE140713, GSE147162 and the osteoporosis dataset (GSE230665), and viral myocarditis dataset (GSE150392) configuration files were generated from gene expression omnibus.

View Article and Find Full Text PDF

Background: BERIL-1 was a randomized phase 2 study that studied paclitaxel with either buparlisib, a pan-class I PIK3 inhibitor, or placebo in patients with recurrent or metastatic (R/M) head and neck squamous cell cancer (HNSCC). Considering the therapeutic paradigm shift with immune checkpoint inhibitors (ICIs) now approved in the first-line setting, we present an updated immunogenomic analysis of patients enrolled in BERIL-1, including patients with immune-infiltrated tumors.

Objective: The objective of this study was to identify biomarkers predictive of treatment efficacy in the context of the post-ICI therapeutic landscape.

View Article and Find Full Text PDF

Cadmium (Cd) is a widely available metal that has been found to have a role in causing nonalcoholic fatty liver disease (NAFLD). However, the detailed toxicological targets and mechanisms by which Cd causes NAFLD are unknown. Therefore, the present work aims to reveal the main targets of action, cellular processes, and molecular pathways by which cadmium causes NAFLD.

View Article and Find Full Text PDF

[Mechanism of ginsenoside Rg_1 in regulating autophagy through miR-155/Notch1/Hes1 pathway to attenuate hypoxia/reoxygenation injury in HL-1 cells].

Zhongguo Zhong Yao Za Zhi

December 2024

School of Traditional Chinese Medicine, Binzhou Medical College Yantai 264003, China Institute of Basic Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences Beijing 100091, China.

This article explored the specific mechanism by which ginsenoside Rg_1 regulates cellular autophagy to attenuate hypoxia/reoxygenation(H/R) injury in HL-1 cardiomyocytes through the microRNA155(miR-155)/neurogenic gene Notch homologous protein 1(Notch1)/hairy and enhancer of split 1(Hes1) pathway. An HL-1 cell model with H/R injury was constructed, and ginsenoside Rg_1 and/or Notch1 inhibitor DAPT and miR-155 mimics were used to treat cells. Cell counting kit(CCK)-8 was used to detect the relative viability of HL-1 cells with H/R injury.

View Article and Find Full Text PDF

Combined exercise-induced modulation of Notch pathway and muscle quality in senescence-accelerated mice.

Pflugers Arch

January 2025

School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 14040-907, Brazil.

The Notch signaling pathway is crucial for skeletal muscle development, regeneration, inflammation, and aging. This study investigated the association between interleukin-10 (IL-10) and the Notch pathway in C2C12 cells, as well as explored the effects of combined endurance and resistance exercise on the Notch and autophagy pathways in the skeletal muscle of senescence-accelerated mouse-resistant 1 Sedentary (SAMR1 CT), SAMR1 exercised (SAMR1 EX), senescence-accelerated prone mouse 8 Sedentary (SAMP8 CT), and SAMP8 exercised (SAMP8 EX). C2C12 myoblasts were transfected with siIL-10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!