Vorinostat is a histone deacetylase inhibitor that induces differentiation, growth arrest, and/or apoptosis of malignant cells both in vitro and in vivo and has shown clinical responses in approximately 30% of patients with advanced mycosis fungoides and Sézary syndrome cutaneous T-cell lymphoma (CTCL). The purpose of this study was to identify biomarkers predictive of vorinostat response in CTCL using preclinical model systems and to assess these biomarkers in clinical samples. The signal transducer and activator of transcription (STAT) signaling pathway was evaluated. The data indicate that persistent activation of STAT1, STAT3, and STAT5 correlate with resistance to vorinostat in lymphoma cell lines. Simultaneous treatment with a pan-Janus-activated kinase inhibitor resulted in synergistic antiproliferative effect and down-regulation of the expression of several antiapoptotic genes. Immunohistochemical analysis of STAT1 and phosphorylated tyrosine STAT3 (pSTAT3) in skin biopsies obtained from CTCL patients enrolled in the vorinostat phase IIb trial showed that nuclear accumulation of STAT1 and high levels of nuclear pSTAT3 in malignant T cells correlate with a lack of clinical response. These results suggest that deregulation of STAT activity plays a role in vorinostat resistance in CTCL, and strategies that block this pathway may improve vorinostat response. Furthermore, these findings may be of prognostic value in predicting the response of CTCL patients to vorinostat.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-07-6091 | DOI Listing |
Background: In Alzheimer's disease (AD), histone acetylation is disrupted, suggesting loss of transcriptional control. Moreover, converging evidence suggests an age- and AD-dependent loss of transcription controlled by all-trans-retinoic acid (ATRA), the bioactive metabolite of vitamin A (VA). Antioxidant depletion causes oxidative stress (OS).
View Article and Find Full Text PDFPLoS One
December 2024
Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea.
The increasing utilization of deep learning models in drug repositioning has proven to be highly efficient and effective. In this study, we employed an integrated deep-learning model followed by traditional drug screening approach to screen a library of FDA-approved drugs, aiming to identify novel inhibitors targeting the TNF-α converting enzyme (TACE). TACE, also known as ADAM17, plays a crucial role in the inflammatory response by converting pro-TNF-α to its active soluble form and cleaving other inflammatory mediators, making it a promising target for therapeutic intervention in diseases such as rheumatoid arthritis.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
Background: Multiple myeloma (MM) is a hematological malignancy characterized by the abnormal proliferation of plasma cells. Mitochondrial dysfunction and dysregulated programmed cell death (PCD) pathways have been implicated in MM pathogenesis. However, the precise roles of mitochondria-related genes (MRGs) and PCD-related genes (PCDRGs) in MM prognosis remain unclear.
View Article and Find Full Text PDFEpigenomics
December 2024
Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
Aim: The hypoxic tumor microenvironment (TME) in oral squamous cell carcinoma (OSCC) is primarily regulated by hypoxia-inducible factor-1 alpha (HIF-1α), impacting histone acetylation and methylation, which contribute to drug resistance. Vorinostat, a histone deacetylase inhibitor (HDACi), de-stabilizes HIF-1α, while PX-12, a thioredoxin-1 (Trx-1) inhibitor, prevents HIF-1α accumulation. Combining HDACi with a Trx-1 inhibitor may enhance efficacy and reduce resistance by increasing reactive oxygen species (ROS) in cancer cells.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Engineering Laboratory for Synthetic Drugs, School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China; College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China. Electronic address:
Histone Deacetylases (HDACs) have emerged as key therapeutic targets in cancer treatment. In this study, we designed CURSAHA, a multifunctional anticancer agent, through the pharmacophore fusion of Vorinostat and curcumin. CURSAHA demonstrates broad-spectrum inhibitory activity against HDACs, effectively suppressing tumor cells with overexpressed HDACs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!