Calorie restriction has been shown to inhibit epithelial carcinogenesis and this method of dietary restriction reduces many circulating proteins, including insulin-like growth factor I (IGF-I). Previously, we identified a relationship between elevated tissue IGF-I levels and enhanced susceptibility to chemically induced skin tumorigenesis. In this study, liver IGF-I-deficient (LID) mice, which have a 75% reduction in serum IGF-I, were subjected to the standard two-stage skin carcinogenesis protocol using 7,12-dimethylbenz(a)anthracene as the initiator and 12-O-tetradecanoylphorbol-13-acetate (TPA) as the promoter. We observed a significant reduction in epidermal thickness and labeling index in LID mice treated with either vehicle or TPA. A significant decrease in both tumor incidence and tumor multiplicity was observed in LID mice undergoing two-stage skin carcinogenesis relative to wild-type littermates. Western blot analyses of epidermal extracts revealed reduced activation of both the epidermal growth factor and IGF-I receptors in response to TPA treatment in LID mice. In addition, reduced activation of both Akt and the mammalian target of rapamycin (mTOR) was observed in LID mice following TPA treatment relative to wild-type controls. Signaling downstream of mTOR was also reduced. These data suggest a possible mechanism whereby reduced circulating IGF-I leads to attenuated activation of the Akt and mTOR signaling pathways, and thus, diminished epidermal response to tumor promotion, and ultimately, two-stage skin carcinogenesis. The current data also suggest that reduced circulating IGF-I levels which occur as a result of calorie restriction may lead to the inhibition of skin tumorigenesis, at least in part, by a similar mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-07-6271DOI Listing

Publication Analysis

Top Keywords

lid mice
20
two-stage skin
16
skin carcinogenesis
16
growth factor
12
insulin-like growth
8
calorie restriction
8
factor igf-i
8
igf-i levels
8
skin tumorigenesis
8
observed lid
8

Similar Publications

In the later stages of Parkinson's disease (PD), patients often manifest levodopa-induced dyskinesia (LID), compromising their quality of life. The pathophysiology underlying LID is poorly understood, and treatment options are limited. To move toward filling this treatment gap, the intrinsic and synaptic changes in striatal spiny projection neurons (SPNs) triggered by the sustained elevation of dopamine (DA) during dyskinesia were characterized using electrophysiological, pharmacological, molecular and behavioral approaches.

View Article and Find Full Text PDF

Relative humidity (RH) is measured in vivaria with a broad range to accommodate seasonal fluctuations. It is assumed that measurements in the room (macroenvironment) reflect those in the cage (microenvironment). However, there is limited data comparing RH in the macroenvironment to the microenvironment and how the mice may be affected by variations in RH that fall within husbandry recommendations.

View Article and Find Full Text PDF
Article Synopsis
  • A balance between dopamine and acetylcholine (ACh) is crucial for motor function, and imbalances can lead to issues like Parkinson's disease (PD) and related motor disorders.
  • Contrary to traditional beliefs that ACh signaling is overly active in PD, recent findings show that cholinergic transmission at specific synapses is actually decreased due to reduced M4 receptor function in dopamine-depleted mice.
  • Restoring M4 receptor activity helped alleviate some motor deficits and dyskinesia, suggesting a new therapeutic target for treating Parkinson's and its associated complications.
View Article and Find Full Text PDF

Decrease of K channel expression through D3 receptor-mediated GSK3β signaling alleviates levodopa-induced dyskinesia (LID) in Parkinson's disease mouse model.

Life Sci

December 2024

Department of Physiology, College of Medicine, National Cheng Kung Univesity, Tainan 70101, Taiwan; Institue of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan. Electronic address:

Aims: The standard Parkinson's disease (PD) treatment is L-3,4-dihydroxyphenylalanine (L-DOPA); however, its long-term use may cause L-DOPA-induced dyskinesia (LID). Aberrant activation of medium spiny neurons (MSNs) contributes to LID, and MSN excitability is regulated by dopamine D3 receptor (D3R) and ATP-sensitive potassium (K) channel activity. Nevertheless, it remains unclear if D3R and K channels may be linked in the context of LID.

View Article and Find Full Text PDF

Sialylated IgG induces the transcription factor REST in alveolar macrophages to protect against lung inflammation and severe influenza disease.

Immunity

January 2025

Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA 94305, USA. Electronic address:

While most respiratory viral infections resolve with little harm to the host, severe symptoms arise when infection triggers an aberrant inflammatory response that damages lung tissue. Host regulators of virally induced lung inflammation have not been well defined. Here, we show that enrichment for sialylated, but not asialylated immunoglobulin G (IgG), predicted mild influenza disease in humans and was broadly protective against heterologous influenza viruses in a murine challenge model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!