Major role of human KLK14 in seminal clot liquefaction.

J Biol Chem

Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G 1L5, Canada.

Published: July 2008

AI Article Synopsis

  • Liquefaction of human semen involves breaking down a coagulum to release motile sperm, with key enzymes from the kallikrein-related peptidase (KLK) family, particularly KLK3, playing a central role in this process.
  • KLK14 has been identified as an important activator that influences KLK3 activity and is linked to issues such as delayed liquefaction and reduced sperm motility.
  • The study demonstrates that KLK14 enhances the liquefaction process and modifies the early and late enzymatic activities related to semen breakdown, indicating a crucial role for KLK14 in this regulatory mechanism.

Article Abstract

Liquefaction of human semen involves proteolytic degradation of the seminal coagulum and release of motile spermatozoa. Several members of human kallikrein-related peptidases (KLKs) have been implicated in semen liquefaction, functioning through highly regulated proteolytic cascades. Among these, KLK3 (also known as prostate-specific antigen) is the main executor enzyme responsible for processing of the primary components of semen coagulum, semenogelins I and II. We have recently identified KLK14 as a potential activator of KLK3 and other KLKs. This study aims to elucidate the cascade-mediated role of KLK14 ex vivo. KLK14 expression was significantly lower (p = 0.0252) in individuals with clinically delayed liquefaction. Concordantly, KLK14 expression was significantly (p = 0.0478) lower in asthenospermic cases. Specific inhibition of KLK14 activity by the synthetic inhibitor ACT(G9) resulted in a significant delay in semen liquefaction, a drop in the "early" (30 min postejaculation) "chymotrypsin-like" and KLK1 activity, and an increase in the "late" (90 min postejaculation) chymotrypsin-like activity. Conversely, the addition of recombinant active KLK14 facilitated the liquefaction process, augmented the early chymotrypsin-like activity, and lowered late chymotrypsin-like activity. Given that the observed chymotrypsin-like activity was almost completely attributed to KLK3 activity, KLK3 seems to be regulated bidirectionally. Accordingly, a higher level of KLK3 fragmentation was observed in KLK14-induced coagula, suggesting an inactivation mechanism via internal cleavage. Finally, semenogelins I and II were directly cleaved by KLK14. Semenogelins were also able to reverse KLK14 inhibition by Zn2+, providing a novel regulatory mechanism for KLK14 activity. Our results show that KLK14 exerts a significant and dose-dependent effect in the process of semen liquefaction.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M801194200DOI Listing

Publication Analysis

Top Keywords

chymotrypsin-like activity
16
semen liquefaction
12
klk14
11
klk14 expression
8
activity
8
klk14 activity
8
min postejaculation
8
liquefaction
7
semen
5
klk3
5

Similar Publications

Article Synopsis
  • The 3-chymotrypsin-like protease (3CL-PR) of SARS-CoV-2 is essential for virus replication and is targeted by the COVID-19 drug Paxlovid, making it important for understanding its catalytic behavior.
  • Research indicates that the activity of 3CL-PR is pH-dependent, with specific acidic and basic groups necessary for optimal enzymatic function, suggesting a neutral catalytic dyad involving cysteine and histidine.
  • Kinetic studies reveal faster rates in certain conditions, highlighting the influence of the active form of the enzyme, and a full catalytic mechanism for 3CL-PR is proposed based on these findings.
View Article and Find Full Text PDF

A novel digestive protease chymotrypsin-like serine contributes to anti-BmNPV activity in silkworm (Bombyxmori).

Dev Comp Immunol

December 2024

Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, 230036, China. Electronic address:

Serine proteases (SPs) are important proteases in the digestive system of lepidopteran insects. They play important roles in protein digestion, coagulation, signal transduction, hormone activation, inflammation and development. Blood-borne pyosis caused by Bombyx mori nuclear polyhedrosis virus (BmNPV) has caused serious harm to sericulture.

View Article and Find Full Text PDF

design and discovery of pan coronavirus small molecule anti-virals targeting 3CL protease.

J Biomol Struct Dyn

December 2024

Department of Biological Sciences, BITS Pilani K K Birla Goa campus, Zuarinagar, Goa, India.

Coronaviruses (CoV), belonging to the family , were not considered dangerous pathogens until the outbreaks of SARS, MERS, and more recently, COVID-19. The coronaviruses causing these respective diseases/syndromes, SARS, MERS, and SARS-CoV2, share high sequence and structural similarities. COVID-19 continues to have a global impact on human health and the economy.

View Article and Find Full Text PDF

Exploring bifunctional molecules for anti-SARS-CoV-2 and anti-inflammatory activity through structure-based virtual screening, SAR investigation, and biological evaluation.

Int J Biol Macromol

December 2024

Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. Electronic address:

As new variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to emerge, they raise increasing concerns about the efficacy of neutralizing antibodies and vaccines. This situation underscores the urgent need for specific drugs against the coronavirus disease 2019 (COVID-19). Given that COVID-19 is particularly associated with substantial inflammation, the development of novel, effective antiviral and anti-inflammatory agents represents a promising research direction.

View Article and Find Full Text PDF

The proteasome is considered an excellent drug target for many infectious diseases as well as cancer. Challenges with robust and safe supply of proteasomes from infectious agents, lack of structural information, and complex pharmacology due to multiple active sites have hampered progress in the infectious disease space. We recombinantly expressed the proteasome of the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease, and demonstrate pharmacological equivalence to the native T.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!