We have investigated the excited-state dynamics and nonlinear optical properties of representative core-modified expanded porphyrins, tetrathiarubyrin, tetraselenarubyrin, pentathiaheptaphyrin, tetrathiaoctaphyrin, and tetraselenaoctaphyrin, containing 26, 30, and 34 pi electrons using steady-state and time-resolved absorption and fluorescence spectroscopic measurements along with femtosecond Z-scan method, with a particular attention to the photophysical properties related to molecular planarity and aromaticity. Core-modification of macrocycles by sulfur and selenium leads to NIR-extended steady-state absorption and fluorescence spectra and short-lived excited-state due to the heavy-atom effect in time-resolved spectroscopic experiments. Large negative nucleus-independent chemical shift values ranging from -13 to -15 ppm indicate that all molecular systems are highly aromatic. The observed enhancement of two-photon absorption cross-section values over 10 (4) GM for core-modified hepta- and octaphyrins is mainly attributable to their rigid and planar structures as well as their aromaticity. Overall, the observed spectroscopic and theoretical results consistently demonstrate the enhanced molecular planarity of core-modified expanded porphyrins compared with their corresponding all-aza expanded porphyrins.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp800748nDOI Listing

Publication Analysis

Top Keywords

expanded porphyrins
16
core-modified expanded
12
photophysical properties
8
absorption fluorescence
8
molecular planarity
8
core-modified
4
properties core-modified
4
expanded
4
porphyrins
4
porphyrins nature
4

Similar Publications

A significant enhancement in the photocatalytic activity of metal-organic frameworks (MOFs) is achieved by expanding the visible-light response range through the strategic incorporation of functional groups, such as metalloporphyrins. Herein, Pd-metalised tetrakis(4-carboxyphenyl)porphyrin (PdTCPP) photosensitiser is integrated into the UiO-66-(NH) framework, creating the hybrid material PdTCPP ⊂ UiO-66-(NH) using a facile mixed-ligand strategy. Platinum nanoparticles (Pt NPs) are subsequently introduced as a co-catalyst via in situ photoreduction, resulting in the formation of the Pt/PdTCPP ⊂ UiO-66-(NH) hybrid material, which demonstrates exceptional catalytic performance under visible-light irradiation.

View Article and Find Full Text PDF

Tuning Bro̷nsted Acidity by up to 12 p Units in a Redox-Active Nanopore Lined with Multifunctional Metal Sites.

J Am Chem Soc

January 2025

Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States.

Electrostatic interactions, hydrogen bonding, and solvation effects can alter the free energies of ionizable functional groups in proteins and other nanoporous architectures, allowing such structures to tune acid-base chemistry to support specific functions. Herein, we expand on this theme to examine how metal sites ( = H, Zn, Co, Co) affect the p of benzoic acid guests bound in discrete porphyrin nanoprisms () in CDCN. These host-guest systems were chosen to model how porous metalloporphyrin electrocatalysts might influence H transfer processes that are needed to support important electrochemical reactions (e.

View Article and Find Full Text PDF

Effective multicolor visual biosensor for ochratoxin A detection enabled by DNAzyme catalysis and gold nanorod etching.

Mikrochim Acta

December 2024

Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.

A novel detection technique is introduced that offers sensitive and reliable ochratoxin A (OTA) detection. The method leverages the etching of gold nanorods (AuNRs) stabilized by hexadecyl trimethyl ammonium bromide (CTAB) using the oxidized form of 3,3',5,5'-tetramethyl benzidine sulfate (TMB), creating a susceptible multicolor visual detection system for OTA. The visual detection is enabled by Mg-assisted DNAzyme catalysis combined with the catalytic hairpin assembly (CHA) signal amplification strategy.

View Article and Find Full Text PDF

Trivalent actinide expanded porphyrin complexes have been of synthetic interest since the isolation of the series of trivalent lanthanide texaphyrin complexes in 1992, however, synthesis of these actinide-based complexes has not yet been achieved. In this work, a computational study with relativistic density functional theory was performed to determine how trivalent actinide ions (Ac through Lr) interact with Schiff base expanded porphyrin macrocycles in a methanol solvent as an alternate pathway to stabilization. A thorough analysis of structural parameters, electronic structure, stability of microsolvation environments, and relative binding energies provided insight into the most stable structures.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on synthesizing two new compounds called pentafluorophenyl-N-confused porphyrins (PFNCPs), one with acetylacetonate and the other with ylidene-2-propanone, through a simple one-pot reaction without a catalyst.
  • The research demonstrates that the acetylacetonate-substituted PFNCP undergoes chemical changes under mild acidic conditions, producing a new derivative when chelated with boron, while the other compound shows a unique electrocyclic reaction resulting in a tricyclic product.
  • Characterization of these compounds was achieved using various techniques, including X-ray crystallography and spectroscopy, with additional theoretical studies conducted
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!