Atmospheric spores of ectomycorrhizal (ECM) fungi are a potential source of contamination when mycorrhizal studies are performed in the greenhouse, and techniques for minimizing such contamination have rarely been tested. We grew loblolly pine (Pinus taeda L.) from seed in a greenhouse and inside a high-efficiency particulate air-filtered chamber (HFC) constructed within the same greenhouse. Seedlings were germinated in seven different sand- or soil-based and artificially based growth media. Seedlings grown in the HFC had fewer mycorrhizal short roots than those grown in the open greenhouse atmosphere. Furthermore, the proportion of seedlings from the HFC that were completely non-mycorrhizal was higher than that of seedlings from the greenhouse atmosphere. Seedlings grown in sterilized, artificially based growth media (>50% peat moss, vermiculite, and/or perlite by volume) had fewer mycorrhizal short roots than those grown in sand- or soil-based media. The HFC described here can minimize undesirable ECM colonization of host seedlings in greenhouse bioassays. In addition, the number of non-mycorrhizal seedlings can be maximized when the HFC is used in combination with artificially based growth media.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00572-008-0176-3DOI Listing

Publication Analysis

Top Keywords

seedlings greenhouse
12
artificially based
12
based growth
12
growth media
12
loblolly pine
8
pine pinus
8
pinus taeda
8
seedlings
8
sand- soil-based
8
seedlings grown
8

Similar Publications

Many endophytic fungi are approved as plant growth stimulants, and several commercial biostimulants have already been introduced in agricultural practice. However, there are still many species of fungi whose plant growth-promoting properties have been understudied or not studied at all. We examined the growth-promoting effect in spring barley () and Italian ryegrass () induced by three endophytic fungi previously obtained from the roots of / grasses.

View Article and Find Full Text PDF

Drought stress during the plant's growing season is a serious constraint to plant establishment in arid and semiarid Mediterranean ecosystems. Plant growth promoting rhizobacteria (PGPR) as environmentally friendly and innovative management approach can be used to produce seedlings better adapted to these environments. We tested native PGPR strains isolated from drought-tolerant tree and shrub species originating from two climatically contrasting regions: hot-dry (Dehloran) and milder Mediterranean climate (Ilam).

View Article and Find Full Text PDF

Construing the resilience to osmotic stress using endophytic fungus in maize (Zea mays L.).

Plant Mol Biol

January 2025

Department of Plant Pathology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra (GKVK), Bengaluru, India.

In a wake of shifting climatic scenarios, plants are frequently forced to undergo a spectrum of abiotic and biotic stresses at various stages of growth, many of which have a detrimental effect on production and survival. Naturally, microbial consortia partner up to boost plant growth and constitute a diversified ecosystem against abiotic stresses. Despite this, little is known pertaining to the interplay between endophytic microbes which release phytohormones and stimulate plant development in stressed environments.

View Article and Find Full Text PDF

First Report of Causing Root Rot on Tulip Poplar in Tennessee and the United States.

Plant Dis

January 2025

Tennessee State University, Otis Floyd Nursery Research Center, 472 Cadillac Lane, McMinnville, Tennessee, United States, 37110;

Tulip poplar () is a member of the Magnolia family, is a large, fast-growing, long-lived, deciduous tree native to eastern North America. One-year-old tulip poplar seedlings grown under field conditions in a commercial nursery in Warren County, Tennessee, exhibited severe root rot in May 2024. Dark brown to black lesions were observed on the affected roots.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!