Polydactyly in mice lacking HDAC9/HDRP.

Exp Biol Med (Maywood)

Dept. of Molecular and Cell Biology, University of Texas at Dallas, 2601 N. Floyd Road, Richardson, TX 75080, USA.

Published: August 2008

AI Article Synopsis

Article Abstract

Mice lacking histone deacetylase 9 (HDAC9) and its truncated variant, HDRP, exhibit post-axial polydactyly that manifests as an extra big toe on the right hind foot. Polydactyly in HDAC9/ HDRP knockout mice occurs with incomplete penetrance and affects both genders similarly. Because polydactyly can result from overactivity of sonic hedgehog (Shh) signaling, we investigated whether HDRP acted as a negative regulator of the Shh pathway. We find that Gli1, a transcription factor and downstream mediator of Shh signaling, is expressed at substantially higher levels in the feet of perinatal HDAC9/ HDRP-/- mice as compared with wild-type littermates. To more directly examine whether HDRP negatively-regulates Shh signaling we utilized cell lines that express components of the Shh pathway and that respond to the Shh agonist purmorphamine. We find that purmorphamine-mediated stimulation of Gli1 in the NIH 3T3 and HT22 cell lines is inhibited by the expression of HDRP. In HT22 cells, purmorphamine treatment leads to an increase in the rate of cell proliferation, which is also inhibited by HDRP. This inhibitory effect of HDRP on purmorphamine-mediated cell proliferation was also observed in primary cultures of glial cells. Although the mechanism by which it inhibits Gli1 induction and cell proliferation by purmorphamine is not clear, HDRP localizes to the nucleus suggesting it acts just upstream of Gli3 activation in the signaling cascade activated by Shh. Taken together our results suggest that HDRP acts as a negative regulator of the Shh pathway and that the absence of HDRP results in hyper-activation of this pathway resulting in polydactyly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2656257PMC
http://dx.doi.org/10.3181/0802-RM-48DOI Listing

Publication Analysis

Top Keywords

shh signaling
12
shh pathway
12
cell proliferation
12
hdrp
10
mice lacking
8
shh
8
negative regulator
8
regulator shh
8
cell lines
8
polydactyly
5

Similar Publications

Hedgehog (HH) pathway is involved in pulmonary development and lung homeostasis. It orchestrates airway epithelial cell (AEC) differentiation and contributes to respiratory pathogenesis. The core elements Gli2, Smo, and Shh were found altered in the bronchial epithelium of patients with chronic obstructive pulmonary disease (COPD).

View Article and Find Full Text PDF

Mutations in Sonic Hedgehog (SHH) signaling pathway genes, for example, (SUFU), drive granule neuron precursors (GNP) to form medulloblastomas (MB). However, how different molecular lesions in the Shh pathway drive transformation is frequently unclear, and mutations in the cerebellum seem distinct. In this study, we show that fibroblast growth factor 5 (FGF5) signaling is integral for many infantile MB cases and that expression is uniquely upregulated in infantile MB tumors.

View Article and Find Full Text PDF

Teleost fish, such as Poecilia latipinna, exhibit remarkable regenerative capabilities, making them excellent models for studying tissue regrowth. They regenerate body parts like the tail fin through epimorphic regeneration, involving wound healing, blastema formation (a pool of proliferative cells), and tissue differentiation. Bone Morphogenetic Protein (BMP) and Fibroblast Growth Factor (FGF) signaling pathways play crucial roles in this process, but their specific functions during blastema formation remain unclear.

View Article and Find Full Text PDF

Amniote skulls are diverse in shape and skeletal composition, which is the basis of much adaptive diversification within this clade. Major differences in skull shape are established early in development, at a critical developmental interval spanning the initial outgrowth and fusion of the facial processes. In birds, this is orchestrated by domains of Shh and Fgf8 expression, known as the frontonasal ectodermal zone (FEZ).

View Article and Find Full Text PDF

Cortisol regulates neonatal lung development via Smoothened.

Respir Res

January 2025

National Clinical Research Center for Aging and Medicine, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, 200040, China.

Background: Neonatal respiratory distress syndrome (NRDS), one of the main causes of neonatal death, is clinically characterized by progressive dyspnea and cyanosis 1 to 2 h after birth. Corticosteroids are commonly used to prevent NRDS in clinical. However, the protective mechanism of the corticosteroids remains largely unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!