Characterization of obestatin in rat and human stomach and plasma, and its lack of acute effect on feeding behavior in rodents.

J Endocrinol

Division of Neurology, Respirology, Endocrinology, and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan.

Published: August 2008

Obestatin is a 23-amino acid peptide, initially isolated from rat stomach as an endogenous ligand for the orphan G-protein-coupled receptor. Obestatin is derived from proteolytic cleavage of a 117-amino acid precursor, preproghrelin. Ghrelin increases food intake, body weight, and gastric emptying, whereas obestatin has the opposite effects. In this study, we characterized obestatin in both rat and human stomach, and investigated the peptide's effect on feeding behavior. Using reversed-phase high-performance liquid chromatography coupled with RIAs specific for rat and human obestatin, we detected a very small amount of obestatin, compared with ghrelin, in the gastric fundi. The ratios of obestatin to ghrelin are 0.0039 and 1.94% respectively in the rat and human gastric fundi. In humans, plasma obestatin accounted for 5.21% of the ghrelin concentration, whereas it was undetectable in rat plasma. Plasma ghrelin concentration decreased after a meal in normal subjects, whereas obestatin concentration did not change. When administered centrally or peripherally, obestatin did not suppress food intake in either free-feeding or fasted rodents. Administration of obestatin did not antagonize ghrelin-induced feeding. These findings indicate that obestatin is present at very low levels compared with ghrelin in both rat and human, and has no acute effect on feeding behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1677/JOE-08-0082DOI Listing

Publication Analysis

Top Keywords

rat human
20
feeding behavior
12
obestatin
12
obestatin rat
8
human stomach
8
acute feeding
8
food intake
8
compared ghrelin
8
gastric fundi
8
ghrelin concentration
8

Similar Publications

The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.

View Article and Find Full Text PDF

Adaptation to existence outside the womb is a key event in the life of a mammal. The absence of macrophages in rats with a homozygous mutation in the colony-stimulating factor 1 receptor (Csf1r) gene (Csf1rko) severely compromises pre-weaning somatic growth and maturation of organ function. Transfer of wild-type bone marrow cells (BMT) at weaning rescues tissue macrophage populations permitting normal development and long-term survival.

View Article and Find Full Text PDF

Finding new ways to treat overdoses.

Elife

January 2025

Department of Pharmaceutical Sciences, University of Kentucky, Lexington, United States.

Reversing opioid overdoses in rats using a drug that does not enter the brain prevents the sudden and severe withdrawal symptoms associated with therapeutics that target the central nervous system.

View Article and Find Full Text PDF

Neuro-reproductive toxicity and carcinogenicity of 1-bromopropane - studies for evidence-based preventive medicine (EBPM).

J Occup Health

January 2025

Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.

Bromopropane was introduced commercially as an alternative to ozone-depleting and global warming solvents. The identification of 1-bromopropane neurotoxicity in animal experiments was followed by reports of human cases of 1-bromopropane toxicity. In humans, the most common clinical features of 1-bromopropane neurotoxicity are decreased sensation, weakness in extremities, and walking difficulties.

View Article and Find Full Text PDF

Keratin/chitosan film promotes wound healing in rats with combined radiation-wound injury.

J Mater Sci Mater Med

January 2025

Department of Nuclear Medicine, Chongqing University Cancer Hospital, No. 181 HanYu St, Shapingba District, Chongqing, 400030, PR China.

Human hair keratin, a natural protein derived from human hair, has emerged prominently in the field of wound repair, showcasing its unique regenerative capabilities and extensive application potential. However, it is a challenge for the keratin to efficiently therapy the impaired wound healing, such as combined radiation-wound injury. Here, we report a keratin/chitosan (KRT/CS) film for skin repair of chronic wounds in in rats with combined radiation-wound injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!