Current published data suggest that DNA mismatch repair (MMR) triggers prolonged G(2) cell cycle checkpoint arrest after alkylation damage from N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) by activating ATR (ataxia telangiectasia-Rad3-related kinase). However, analyses of isogenic MMR-proficient and MMR-deficient human RKO colon cancer cells revealed that although ATR/Chk1 signaling controlled G(2) arrest in MMR-deficient cells, ATR/Chk1 activation was not involved in MMR-dependent G(2) arrest. Instead, we discovered that disrupting c-Abl activity using STI571 (Gleevec, a c-Abl inhibitor) or stable c-Abl knockdown abolished MMR-dependent p73alpha stabilization, induction of GADD45alpha protein expression, and G(2) arrest. In addition, inhibition of c-Abl also increased the survival of MNNG-exposed MMR-proficient cells to a level comparable with MMR-deficient cells. Furthermore, knocking down GADD45alpha (but not p73alpha) protein levels affected MMR-dependent G(2) arrest responses. Thus, MMR-dependent G(2) arrest responses triggered by MNNG are dependent on a human MLH1/c-Abl/GADD45alpha signaling pathway and activity. Furthermore, our data suggest that caution should be taken with therapies targeting c-Abl kinase because increased survival of mutator phenotypes may be an unwanted consequence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2490779 | PMC |
http://dx.doi.org/10.1074/jbc.M709953200 | DOI Listing |
Pharmaceutics
December 2024
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
Background: The clinical efficacies of anticancer drugs are limited by non-selective toxic effects on healthy tissues and low bioavailability in tumor tissue. Therefore, the development of vehicles that can selectively deliver and release drugs at the tumor site is critical for further improvements in patient survival.
Methods: We prepared a CEC nano-drug delivery system, CEC@ZIF-8, with a zeolite imidazole framework-8 (ZIF-8) as a carrier, which can achieve the response of folate receptor (FR).
Pharmaceuticals (Basel)
December 2024
Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
The protein kinases CLK and ROCK play key roles in cell growth and migration, respectively, and are potential anticancer targets. ROCK inhibitors have been approved by the FDA for various diseases and CLK inhibitors are currently being trialed in the clinic as anticancer agents. Compounds with polypharmacology are desired, especially in oncology, due to the potential for high efficacy as well as addressing resistance issues.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
Glioblastoma is a malignant tumor with a poor prognosis for the patient due to its high lethality and limited chemotherapy available. Therefore, from the point of view of chemotherapy treatment, glioblastoma can be considered an unmet medical need. This has led to the investigation of new drugs for monotherapy or associations, acting by synergistic pharmacological mechanisms.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Unité Propre de Recherche Innovante, ERIT Plant Science, Interactions and Innovation, Avignon Université, 301 Rue Baruch de Spinoza, 84140 Avignon, France.
Ultraviolet C (UV-C) flash treatment represents a promising method for priming plants. This study compared the effects of 1 s (flash) and 60 s (60 s) UV-C exposures on the transcriptome of L. plants.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská Cesta 9, 840 05 Bratislava, Slovakia.
Isothiocyanates (ITCs) are naturally occurring sulfur-containing compounds with diverse biological effects. This study investigated the effects of sulforaphane (SFN, an aliphatic ITC) and benzyl isothiocyanate (BITC, an aromatic ITC) on human acute myeloid leukemia SKM-1 cells, focusing on cell proliferation, cell death, and drug resistance. Both drug-sensitive SKM-1 cells and their drug-resistant SKM/VCR variant, which overexpresses the drug transporter P-glycoprotein, were used.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!