Initiation of warfarin therapy is associated with bleeding owing to its narrow therapeutic window and unpredictable therapeutic dose. Pharmacogenetic-based dosing algorithms can improve accuracy of initial warfarin dosing but require rapid genotyping for cytochrome P-450 2C9 (CYP2C9) *2 and *3 single nucleotide polymorphisms (SNPs) and a vitamin K epoxide reductase (VKORC1) SNP. We evaluated 4 commercial systems: INFINITI analyzer (AutoGenomics, Carlsbad, CA), Invader assay (Third Wave Technologies, Madison, WI), Tag-It Mutation Detection assay (Luminex Molecular Diagnostics, formerly Tm Bioscience, Toronto, Canada), and Pyrosequencing (Biotage, Uppsala, Sweden). We genotyped 112 DNA samples and resolved any discrepancies with bidirectional sequencing. The INFINITI analyzer was 100% accurate for all SNPs and required 8 hours. Invader and Tag-It were 100% accurate for CYP2C9 SNPs, 99% accurate for VKORC1 -1639/3673 SNP, and required 3 hours and 8 hours, respectively. Pyrosequencing was 99% accurate for CYP2C9 *2, 100% accurate for CYP2C9 *3, and 100% accurate for VKORC1 and required 4 hours. Current commercial platforms provide accurate and rapid genotypes for pharmacogenetic dosing during initiation of warfarin therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1309/1E34UAPR06PJ6HMLDOI Listing

Publication Analysis

Top Keywords

100% accurate
16
required hours
12
accurate cyp2c9
12
commercial platforms
8
rapid genotyping
8
initiation warfarin
8
warfarin therapy
8
infiniti analyzer
8
99% accurate
8
accurate vkorc1
8

Similar Publications

Introduction: Standing balance is essential for physical functioning. Therefore, improving balance control is a key priority in the management of knee osteoarthritis (OA), underscoring the importance of accurately assessing standing balance.

Purpose: To assess reliability, construct validity and responsiveness of common clinical balance tests, including Step Test, Single-Leg Stance Test, and Functional Reach Test, in patients with knee OA.

View Article and Find Full Text PDF

Lumbar spinal surgery relies on palpation of anatomical landmarks and X-ray imaging confirmation to identify the correct spinal level, therefore exposing patients and staff to radiation, and increasing intraoperative time and cost. Ultrasound (US) assistance is being used to visualise spinal anatomy by many specialities, such as neurology and anaesthetics, and can be used intraoperatively in selected spinal surgery cases. However, its potential use to check spinal levels prior to surgery remains understudied.

View Article and Find Full Text PDF

Background: Invasive breast cancer (BC) is a highly life-threatening disease affecting women world-wide. While its early identification may benefit the provision of more effective therapies, several BC-associated factors may influence BC patients' therapeutic outcomes. Therefore, identifying novel prognostic and therapeutic targets for invasive BC can help with accurate prognosis and therapy-related decisions.

View Article and Find Full Text PDF

This study proposes a hierarchical automated methodology for detecting brain tumors in Magnetic Resonance Imaging (MRI), focusing on preprocessing images to improve quality and eliminate artifacts or noise. A modified Extreme Learning Machine is then used to diagnose brain tumors that are integrated with the Modified Sailfish optimizer to enhance its performance. The Modified Sailfish optimizer is a metaheuristic algorithm known for efficiently navigating optimization landscapes and enhancing convergence speed.

View Article and Find Full Text PDF

Background: CblC type methylmalonic aciduria (cblC disease) is the most common inborn error of vitamin B12 metabolism and due to mutations in the MMACHC gene. The earlier the diagnosis, the better the prognosis. Therefore, convenient and inexpensive detection method is needed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!