Recently, the possibility to use both magnitude and phase image sets for the statistical evaluation of fMRI has been proposed, with the prospective of increasing both statistical power and the spatial specificity. In the present work, several issues that affect the spatial and temporal stability in fMRI phase time series in the presence of physiologic noise processes are reviewed, discussed and illustrated by experiments performed at 3 T. The observed phase value is a fingerprint of the underlying voxel averaged magnetic field variations. Those related to physiological processes can be considered static or dynamic in relation to the temporal scale of a 2D acquisition and will play out on different spatial scales as well: globally across the entire images slice, and locally depending on the constituents and their relative fractions inside the MRI voxel. The 'static' respiration-induced effects lead to magneto-mechanic scan-to-scan variations in the global magnetic field but may also contribute to local BOLD fluctuations due to respiration-related variations in arterial carbon dioxide. Likewise, the 'dynamic' cardiac-related effects will lead to global susceptibility effects caused by pulsatile motion of the brain as well as local blood pressure-related changes in BOLD and changes in blood flow velocity. Finally, subject motion may lead to variations in both local and global tissue susceptibility that will be especially pronounced close to air cavities. Since dissimilar manifestations of physiological processes can be expected in phase and in magnitude images, a direct relationship between phase and magnitude scan-to-scan fluctuations cannot be assumed a priori. Therefore three different models were defined for the phase stability, each dependent on the relation between phase and magnitude variations and the best will depend on the underlying noise processes. By experiments on healthy volunteers at rest, we showed that phase stability depends on the type of post-processing and can be improved by reducing the low-frequency respiration-induced mechano-magnetic effects. Although the manifestations of physiological noise were in general more pronounced in phase than in magnitude images, due to phase wraps and global Bo effects, we suggest that a phase stability similar to that found in magnitude could theoretically be achieved by adequate correction methods. Moreover, as suggested by our experimental data regarding BOLD-related phase effects, phase stability could even supersede magnitude stability in voxels covering dense microvascular networks with BOLD-related fluctuations as the dominant noise contributor. In the interest of the quality of both BOLD-based and nc-MRI methods, future studies are required to find alternative methods that can improve phase stability, designed to match the temporal and spatial scale of the underlying neuronal activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mri.2008.01.010DOI Listing

Publication Analysis

Top Keywords

phase stability
20
phase magnitude
16
phase
15
physiological noise
8
noise processes
8
magnetic field
8
physiological processes
8
manifestations physiological
8
magnitude images
8
effects phase
8

Similar Publications

In the last decade, substantial progress has been made to improve the performance of optical gyroscopes for inertial navigation applications in terms of critical parameters such as bias stability, scale factor stability, and angular random walk (ARW). Specifically, resonant fiber optic gyroscopes (RFOGs) have emerged as a viable alternative to widely popular interferometric fiber optic gyroscopes (IFOGs). In a conventional RFOG, a single-wavelength laser source is used to generate counter-propagating waves in a ring resonator, for which the phase difference is measured in terms of the resonant frequency shift to obtain the rotation rate.

View Article and Find Full Text PDF

Automatic Optical Path Alignment Method for Optical Biological Microscope.

Sensors (Basel)

December 2024

Guangxi Key Laboratory of Machine Vision and Intelligent Control, Wuzhou University, Wuzhou 543000, China.

A high-quality optical path alignment is essential for achieving superior image quality in optical biological microscope (OBM) systems. The traditional automatic alignment methods for OBMs rely heavily on complex masker-detection techniques. This paper introduces an innovative, image-sensor-based optical path alignment approach designed for low-power objective (specifically 4×) automatic OBMs.

View Article and Find Full Text PDF

Effects of Maillard Reaction Durations on the Physicochemical and Emulsifying Properties of Chickpea Protein Isolate.

Foods

January 2025

Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.

This study investigated the physicochemical and emulsifying properties of chickpea protein isolate (CPI)-citrus pectin (CP) conjugates formed via the Maillard reaction across varying reaction durations. CPI and CP were conjugated under controlled dry-heating conditions, and the resulting conjugates were characterized by measuring their particle size, zeta potential, solubility, thermal stability, surface hydrophobicity, and emulsifying properties. The results showed that as reaction duration increased, the particle size and zeta potential of the CPI-CP conjugates increased significantly, reaching a maximum particle size of 1311.

View Article and Find Full Text PDF

The low stability of water-in-oil-in-water (W/O/W) double emulsions greatly limits their applications. Therefore, in this study, W/O/W Pickering double emulsions (PDEs) were prepared by a two-step emulsification method using polyglycerol polyricinoleate (PGPR) and xanthan gum/lysozyme nanoparticles (XG/Ly NPs) as lipophilic and hydrophilic emulsifiers, respectively. The regulation mechanism of the performance of PDEs by XG/Ly NPs was investigated, and the ability of the system to co-encapsulate epigallocatechin gallate (EGCG) and β-carotene was evaluated.

View Article and Find Full Text PDF

Oil-in-Water Emulsions Made of Pistachio Oil: Physical and Chemical Properties and Stability.

Foods

December 2024

Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy.

Pistachio nuts are valued for their sensory qualities, nutritional benefits, and health-promoting properties. Pistachio oil has also gained interest for its bioactive compounds, though these are sensitive to processing and environmental stresses. While pistachio-based products are commercially available, little research has addressed the emulsifying properties of crude pistachio oil or its impact on the stability and bioactive profile of oil-in-water (O/W) emulsions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!