X-ray structures of the 13 different monofunctional heme catalases published to date were scrutinized in order to gain insight in the mechanism by which NADPH in Clade 3 catalases may protect the reactive ferryloxo intermediate Compound I (Cpd I; por (*+)Fe (IV)O) against deactivation to the catalytically inactive intermediate Compound II (Cpd II; porFe (IV)O). Striking similarities in the molecular network of the protein subunits encompassing the heme center and the surface-bound NADPH were found for all of the Clade 3 catalases. Unique features in this region are the presence of a water molecule (W1) adjacent to the 4-vinyl group of heme and a serine residue or a second water molecule hydrogen-bonded to both W1 and the carbonyl group of a threonine-proline linkage, with the proline in van der Waals contact with the dihydronicotinamide group of NADPH. A mechanism is proposed in which a hydroxyl anion released from W1 undergoes reversible nucleophilic addition to the terminal carbon of the 4-vinyl group of Cpd I, thereby producing a neutral porphyrin pi-radical ferryloxo (HO-por (*)Fe (IV)O) species of reduced reactivity. This structure is suggested to be the elusive Cpd II' intermediate proposed in previous studies. An accompanying proton-shifting process along the hydrogen-bonded network is believed to facilitate the NADPH-mediated reduction of Cpd I to ferricatalase and to serve as a funnel for electron transfer from NADPH to the heme center to restore the catalase Fe (III) resting state. The proposed reaction paths were fully supported as chemically reasonable and energetically feasible by means of density functional theory calculations at the (U)B3LYP/6-31G* level. A particularly attractive feature of the present mechanism is that the previously discussed formation of protein-derived radicals is avoided.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja077787eDOI Listing

Publication Analysis

Top Keywords

water molecule
12
clade catalases
12
mechanism nadph
8
nadph clade
8
intermediate compound
8
compound cpd
8
heme center
8
4-vinyl group
8
nadph
5
cpd
5

Similar Publications

Glaciers serve as natural archives for reconstructing past changes of atmospheric aerosol concentration and composition. While most ice-core studies have focused on inorganic species, organic compounds, which can constitute up to 90% of the submicrometer aerosol mass, have been largely overlooked. To our knowledge, this study presents the first nontarget screening record of secondary organic aerosol species preserved in a Belukha ice core (Siberia, Russian Federation), ranging from the pre-industrial to the industrial period (1800-1980 CE).

View Article and Find Full Text PDF

X-ray structural analysis of bis(guanidinium) disodium hypodiphosphate heptahydrate, (CHN)Na(PO)·7HO revealed close Na...

View Article and Find Full Text PDF

The hydration mechanism of 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a relevant marker of secondary organic aerosol formation from the atmospheric oxidation of α-pinene, has been investigated using the matrix-isolation infrared spectroscopy technique. The experimental results were supported by theoretical calculations. Monomers of MBTCA and heterocomplexes MBTCA-(HO) were identified.

View Article and Find Full Text PDF

Visible-Light Photo-Iniferter Polymerization of Molecularly Imprinted Polymers for Direct Integration with Nanotransducers.

Small Methods

January 2025

Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce, 73100, Italy.

Molecularly Imprinted Polymers (MIPs) have gained prominence as synthetic receptors, combining simplicity of synthesis with robust molecular recognition akin to antibodies and enzymes. One of their main application areas is chemical sensing. However, direct integration of MIPs with nanostructured transducers, crucial for enhancing sensing capabilities and broadening MIPs sensing applications, remains limited.

View Article and Find Full Text PDF

Phthalates are the emerging environmental toxicants derived from phthalic acid and its constituents, which are moderately present in plastics and many personal care products. Phthalate exposure occurs through various environmental factors, including air, water, and soil, with absorption facilitated via ingestion, inhalation, and dermal contact. Upon exposure, phthalates become bioavailable within the biological systems and undergo biotransformation and detoxification processes in the liver.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!