Protein conformational fluctuations are critical for biological functions, although the relationship between protein motion and function has yet to be fully explored. By a thorough bioinformatics analysis of cholinesterases (ChEs), we identified specific hot spots, responsible for protein fluctuations and functions, and those active-site residues that play a role in modulating the cooperative network among the key substructures. This drew the optimization of our design strategy to discover potent and reversible inhibitors of human acetylcholinesterase and butyrylcholinesterase (hAChE and hBuChE) that selectively interact with specific protein substructures. Accordingly, two tricyclic moieties differently spaced by functionalized linkers were investigated as molecular yardsticks to probe the finest interactions with specific hot spots in the hChE gorge. A number of SAR trends were identified, and the multisite inhibitors 3a and 3d were found to be the most potent inhibitors of hBuChE and hAChE known to date.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm701253tDOI Listing

Publication Analysis

Top Keywords

protein fluctuations
8
optimization design
8
design strategy
8
potent inhibitors
8
specific hot
8
hot spots
8
exploiting protein
4
fluctuations active-site
4
active-site gorge
4
gorge human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!