Many surface modification strategies are currently of interest in improving integration of implants to bone. An in vitro precoating of a bone-like mineralized layer of immobilized collagen on the implant surface is a potentially valuable approach to improve host acceptance of the implant. The goal of this investigation was to develop a method to precoat in vitro a bone-like mineralized collagen layer on a pure titanium dental implant surface. The study was conducted on acid-etched and nonetched surfaces of screw implants. Initially, a procedure was standardized to self-assemble collagen from a collagen solution. In subsequent experiments, the implant was also placed inside the solution, and after 3 days, collagen was found to be coated on the implant surface. Mineralization of the collagen gel as well as collagen coating on the implant was carried out by calcium phosphate precipitation from a mineralizing solution of calcium chloride containing polyvinyl phosphonic acid and polyaspartic acid, which served as polyanionic additives to help disperse the precipitation and template mineral nucleation. The implant was kept in the mineralizing solution and maintained for 2 weeks in an incubator at 37 degrees C with a phosphate vapor phase generated from a vial containing dihydrogen ammonium phosphate in the incubator. Scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy analysis confirmed the coated layer to be a biomimetic bone-like mineralized type 1 collagen. Initial studies using osteoblast-like cells indicated cellular attachment on the modified surface. The method appears to be a promising way to generate in vitro a bone-like layer on the implant surface.

Download full-text PDF

Source
http://dx.doi.org/10.1563/1548-1336(2008)34[67:ABPSFI]2.0.CO;2DOI Listing

Publication Analysis

Top Keywords

implant surface
20
bone-like mineralized
12
collagen
9
implant
9
pure titanium
8
vitro bone-like
8
mineralizing solution
8
surface
7
bone-like
5
bone-like precoating
4

Similar Publications

3D Printed Biomimetic Bilayer Limbal Implants for regeneration of the Corneal Structure in Limbal Stem Cell Deficiency.

Acta Biomater

January 2025

Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China. Electronic address:

Limbal stem cell deficiency (LSCD) causes vision loss and is often treated by simple corneal epithelial cell transplantation with poor long-term efficiency. Here, we present a biomimetic bilayer limbal implant using digital light processing 3D printing technology with gelatin methacrylate (GelMA) and poly (ethylene glycol) diacrylate (PEGDA) bioinks containing corneal epithelial cells (CECs) and corneal stromal stem cells (CSSCs), which can transplant CECs and improve the limbal niche simultaneously. The GelMA/PEGDA hydrogel possessed robust mechanical properties to support surgical transplantation and had good transparency, suitable swelling and degradation rate as a corneal implant.

View Article and Find Full Text PDF

: In the last decades, dental implant surfaces have been evolving to increase success and implant survival rates. More studies evaluating outcomes with implants with ultra-hydrophilic multi-zone anodized surfaces are necessary. The aim of this study is to evaluate the short-term outcome of implants of conical connection with anodized ultra-hydrophilic surfaces for support of single teeth and partial rehabilitations.

View Article and Find Full Text PDF

Sandblasting and acid etching are common procedures used to treat implant surfaces, enhancing osseointegration and improving clinical success rates. This clinical study aimed to evaluate the long-term outcomes of sandblasted and acid-etched implants. A total of 303 implants were placed in 114 partially and totally edentulous patients using a two-stage surgical technique and an early loading protocol (6-8 weeks).

View Article and Find Full Text PDF

Current Strategies in Developing Antibacterial Surfaces for Joint Arthroplasty Implant Applications.

Materials (Basel)

January 2025

Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy.

Prosthetic joint infections (PJIs) remain a significant challenge, occurring in 1% to 2% of joint arthroplasties and potentially leading to a 20% to 30% mortality rate within 5 years. The primary pathogens responsible for PJIs include Staphylococcus aureus, coagulase-negative staphylococci, and Gram-negative bacteria, typically treated with intravenous antibiotic drugs. However, this conventional approach fails to effectively eradicate biofilms or the microbial burden in affected tissues.

View Article and Find Full Text PDF

The metastable β-Ti21S alloy exhibits a lower elastic modulus than Ti-6Al-4V ELI while maintaining high mechanical strength and ductility. To address stress shielding, this study explores the integration of lattice structures within prosthetics, which is made possible through additive manufacturing. Continuous adhesion between the implant and bone is essential; therefore, auxetic bow-tie structures with a negative Poisson's ratio are proposed for regions under tensile stress, while Triply Periodic Minimal Surface (TPMS) structures with a positive Poisson's ratio are recommended for areas under compressive stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!