Boron-doped bulk diamond and the boron-doped hydrogen terminated (001) surface of diamond were investigated using the cyclic cluster model. Structure and stability of the hydrogen-terminated (001) surface were calculated and compared with experimental and other theoretical results from the literature. Boron-doping was modeled by substitution of a carbon atom by a boron atom in different positions with increasing distance from the surface up to boron-doped bulk diamond. In agreement with experiments on nanoclusters, boron is most stable in the first surface layers. (c) 2008 Wiley Periodicals, Inc. J Comput Chem, 2008.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.20997DOI Listing

Publication Analysis

Top Keywords

cyclic cluster
8
cluster model
8
boron-doped bulk
8
bulk diamond
8
001 surface
8
boron-doped
4
boron-doped diamond
4
diamond investigation
4
investigation stability
4
stability surface-doping
4

Similar Publications

Quantum computers promise a qualitative speedup in solving a broad spectrum of practical optimization problems. The latter can be mapped onto the task of finding low-energy states of spin glasses, which is known to be exceedingly difficult. Using D-Wave's 5000-qubit quantum processor, we demonstrate that a recently proposed iterative cyclic quantum annealing algorithm can find deep low-energy states in record time.

View Article and Find Full Text PDF

Cyclization: A potential effective modification strategy for umami peptides.

Food Chem

December 2024

Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China. Electronic address:

Cyclization enhances various properties of peptides and has been widely used in life sciences, but it has not been explored in taste peptides. Our study found that cyclization of the N/C termini of the peptides (head-to-tail) via amide bond is a potentially effective modification strategy for umami peptides to improve their properties. This is the first report on umami cyclic peptides.

View Article and Find Full Text PDF

The phosphorylation reaction, catalyzed by the enzyme protein kinase A (PKA), plays one of the key roles in the work of the glutamatergic system, primarily involved in memory functioning. The analysis of the dynamic behavior of the enzyme-substrate complex allows one to learn the mechanism of the enzymatic reaction. According to the results of classical molecular dynamics calculations followed by hierarchical clustering, the most preferred proton acceptor during the phosphorylation reaction catalyzed by PKA is the carboxyl group of the amino acid residue Asp166; however, the γ-phosphate group of ATP can also act as an acceptor.

View Article and Find Full Text PDF

The native extracellular matrix is continuously remodeled to form complex interconnected network structures that reversibly regulate stem cell behaviors. Both regulation and understanding of its intricate dynamicity can help to modulate numerous cell behaviors. However, neither of these has yet been achieved due to the lack of designing and modeling such complex structures with dynamic controllability.

View Article and Find Full Text PDF

Assembly of the Skirt-Like Giant Molybdenum Blue Cluster {Mo} from Dimerization of {Mo} Featuring an Octameric Skeleton.

Inorg Chem

December 2024

Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, No.30, Shuangqing Avenue, Beijing, Haidian 100084, China.

Cyclic compounds are appealing owing to their intrinsic porous structures and facile accessibility as building blocks (BBs) for fabricating high-order assemblies. Nevertheless, the modular synthesis of such molecular entities and their subsequent controlled assembly are still very challenging. Herein, we report the synthesis of a gigantic molybdenum blue (MB) wheel {Mo} (), featuring a skirt-shaped structure dimerized from {Mo}.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!