Computational methods based on continuum electrostatics are widely used in theoretical biochemistry to analyze the function of proteins. Continuum electrostatic methods in combination with quantum chemical and molecular mechanical methods can help to analyze even very complex biochemical systems. In this article, applications of these methods to proteins involved in photosynthesis are reviewed. After giving a short introduction to the basic concepts of the continuum electrostatic model based on the Poisson-Boltzmann equation, we describe the application of this approach to the docking of electron transfer proteins, to the comparison of isofunctional proteins, to the tuning of absorption spectra, to the analysis of the coupling of electron and proton transfer, to the analysis of the effect of membrane potentials on the energetics of membrane proteins, and to the kinetics of charge transfer reactions. Simulations as those reviewed in this article help to analyze molecular mechanisms on the basis of the structure of the protein, guide new experiments, and provide a better and deeper understanding of protein functions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11120-008-9306-1DOI Listing

Publication Analysis

Top Keywords

proteins continuum
8
continuum electrostatics
8
continuum electrostatic
8
help analyze
8
proteins
6
investigating mechanisms
4
mechanisms photosynthetic
4
photosynthetic proteins
4
continuum
4
electrostatics computational
4

Similar Publications

Monitoring of single-nucleus chromatin landscape of ischemic stroke in mouse cerebral cortex across time.

Sci Data

January 2025

Hubei Clinical Research Center of Central Nervous System Repair and Functional Reconstruction, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China.

Ischemic stroke constitutes a multifaceted neurological affliction that spans various cellular types. Lack of dynamic chromatin accessibility data after stroke is one of the obstacles to understanding this process. To gain insights into the variations in transcriptional regulation among various cell types subsequent to a stroke, we employed single-nucleus ATAC-seq to curate a chromatin accessibility compendium from the cerebral cortex of mice subjected to middle cerebral artery occlusion/reperfusion (MCAO/R).

View Article and Find Full Text PDF

Introduction: Several cardiovascular outcome trials have been conducted to assess the cardiovascular safety and efficacy of glucagon-like peptide-1 receptor agonists (GLP1-RAs) on cardiorenal outcomes in patients with type-2 diabetes (T2D). However, the strict requirements of randomised controlled trials to avoid most confounding factors are at the expense of external validity. Using national real-world data, we aimed to evaluate the effectiveness of GLP-1RAs in association with metformin especially on cardiovascular events, hospitalisation for heart failure and all-cause death in comparison with other diabetes treatment schemes using dipeptidyl peptidase IV inhibitors, sulfonylureas/glinides or insulin also associated with metformin.

View Article and Find Full Text PDF

Anisotropic interactions for continuum modeling of protein-membrane systems.

J Chem Phys

December 2024

Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA.

In this work, a model for anisotropic interactions between proteins and cellular membranes is proposed for large-scale continuum simulations. The framework of the model is based on dynamic density functional theory, which provides a formalism to describe the lipid densities within the membrane as continuum fields while still maintaining the fidelity of the underlying molecular interactions. Within this framework, we extend recent results to include the anisotropic effects of protein-lipid interactions.

View Article and Find Full Text PDF

The Taiwan-ADNI workflow toward integrating plasma p-tau217 into prediction models for the risk of Alzheimer's disease and tau burden.

Alzheimers Dement

January 2025

Department of Neurology, Cognition and Aging Center, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City, Taiwan.

Introduction: We integrated plasma biomarkers from the Taiwan Alzheimer's Disease Neuroimaging Initiative and propose a workflow to identify individuals showing amyloid-positive positron emission tomography (PET) with low/intermediate tau burden based on [18F]Florzolotau PET-based quantification.

Methods: We assessed 361 participants across the Alzheimer's disease (AD) and non-AD continuum and measured plasma phosphorylated tau (p-tau)217, p-tau181, amyloid beta (Aβ)42/40 ratio, neurofilament light chain, and glial fibrillary acidic protein levels at two medical centers. We evaluated the diagnostic potential of these biomarkers.

View Article and Find Full Text PDF

Context: Riboflavin (RF), also known as B2 vitamin, is the precursor to flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), two co-enzymes involved in many electron transport processes. Interactions of the isoalloxazine ring, common to all three compounds, are of great interest due to their biological function in flavoproteins and relevance in the transport by the carrier protein leading to development of drug delivery strategies and non-invasive diagnostics techniques. Based on protein crystallographic data, a computational investigation of the interactions in the complexes between lumiflavin, a model compound, and aromatic amino acids, tyrosine and tryptophan, was pursued with the goal of characterizing noncovalent interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!