Background: The genome of the pico-eukaryotic (bacterial-sized) prasinophyte green alga Ostreococcus lucimarinus has one of the highest gene densities known in eukaryotes, yet it contains many introns. Phylogenetic studies suggest this unusually compact genome (13.2 Mb) is an evolutionarily derived state among prasinophytes. The presence of introns in the highly reduced O. lucimarinus genome appears to be in opposition to simple explanations of genome evolution based on unidirectional tendencies, either neutral or selective. Therefore, patterns of intron retention in this species can potentially provide insights into the forces governing intron evolution.

Methodology/principal Findings: Here we studied intron features and levels of expression in O. lucimarinus using expressed sequence tags (ESTs) to annotate the current genome assembly. ESTs were assembled into unigene clusters that were mapped back to the O. lucimarinus Build 2.0 assembly using BLAST and the level of gene expression was inferred from the number of ESTs in each cluster. We find a positive correlation between expression levels and both intron number (R = +0.0893, p = <0.0005) and intron density (number of introns/kb of CDS; R = +0.0753, p = <0.005).

Conclusions/significance: In a species with a genome that has been recently subjected to a great reduction of non-coding DNA, these results imply the existence of selective/functional roles for introns that are principally detectable in highly expressed genes. In these cases, introns are likely maintained by balancing the selective forces favoring their maintenance with other mutational and/or selective forces acting on genome size.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2367439PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002171PLOS

Publication Analysis

Top Keywords

ostreococcus lucimarinus
8
introns highly
8
genome
6
lucimarinus
5
est analysis
4
analysis ostreococcus
4
lucimarinus compact
4
compact eukaryotic
4
eukaryotic genome
4
genome excess
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!