Novel self-association of the APC molecule affects APC clusters and cell migration.

J Cell Sci

Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, WTB/MSI Complex, Dundee, UK.

Published: June 2008

Truncation mutations in the adenomatous polyposis coli (APC) gene are responsible for familial and sporadic colorectal cancer. APC is a multifunctional protein involved in cell migration, proliferation and differentiation. The APC protein forms specific clusters in the cell periphery that correlate with sites of active cell migration. Little is known about the molecular mechanisms that govern these clusters. Here, we identify a novel interaction of an N-terminal region of APC with the extreme C-terminal 300 amino acids of APC and also with itself. The latter interaction is phospho-sensitive and is enhanced by 14-3-3 (YWHA) protein. These interactions modulate the clustering of APC at the ends of membrane protrusions. Overexpressing this domain or inhibiting 14-3-3 proteins disperses APC clusters and leads to decreased cell migration. Moreover, deleting this domain from full-length APC results in less-dynamic clusters compared with wild-type APC. Our data indicate that this newly identified regions in the N-terminal third of APC contributes to the regulation of APC clusters, thus providing a molecular clue for how locally regulated phosphorylation events could mediate the dynamics of APC clusters and contribute to cell migration.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.029470DOI Listing

Publication Analysis

Top Keywords

cell migration
20
apc clusters
16
apc
14
clusters cell
8
clusters
7
cell
6
migration
5
novel self-association
4
self-association apc
4
apc molecule
4

Similar Publications

Purpose: To investigate the therapeutic efficacy of BEZ235, a dual PI3K/mTOR inhibitor, in suppressing pathological neovascularization in an oxygen-induced retinopathy (OIR) mouse model and explore the role of cyclin D1 in endothelial cell cycle regulation.

Methods: Single-cell RNA sequencing was performed to analyze gene expression and cell-cycle alterations in retinal endothelial cells under normoxic and OIR conditions. The effects of BEZ235 on human umbilical vein endothelial cells (HUVECs) and human retinal microvascular endothelial cells (HRMECs) were evaluated by assessing cell viability, cell-cycle progression, proliferation, migration, and tube formation.

View Article and Find Full Text PDF

Aims: We develop and evaluate copper-based metal-organic frameworks (Cu-MOFs) incorporating cromolyn as a linker to enhance structural stability, drug delivery efficiency, and therapeutic potential, particularly for breast cancer treatment.

Materials & Methods: Two Cu-MOF formulations were synthesized: Cu-MOFs-BDC-DOX (using terephthalic acid) and Cu-MOFs-CROMO-DOX (using cromolyn as a linker). Characterization was performed using SEM/TEM for morphology, and FTIR, XRD, and TGA to confirm structural integrity.

View Article and Find Full Text PDF

Evidence accumulated mitochondria, as the "powerplants of the cell," express several functional receptors for external ligands that modify their function and regulate cell biology. This review sheds new light on the role of these organelles in sensing external stimuli to facilitate energy production for cellular needs. This is possible because mitochondria express some receptors on their membranes that are responsible for their autonomous responses.

View Article and Find Full Text PDF

Invading blood cells, extracellular tissue, and soluble mediators all play important roles in the wound-healing process. There is a substantial global burden of disease and mortality attributable to skin defects that do not heal. About 1% to 2% of the population in industrialized nations suffers from chronic wounds that don't heal, despite healthcare breakthroughs; this condition is very costly, costing about $25 billion each year in the US alone.

View Article and Find Full Text PDF

Disruption of the intestinal epithelial barrier results in increased permeability and is a key factor in the onset and progression of Crohn's disease (CD). The protein SPARC is primarily involved in cell interaction and migration, but its specific role in the intestinal epithelial barrier remains unclear. This study demonstrates that SPARC is significantly overexpressed in both CD patients and murine models of colitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!