In this paper we report a review of the results obtained in the last few years by our group in the development of ruthenium(III) complexes characterized by the presence of sulfoxide ligands and endowed with antitumor properties. In particular, we will focus on ruthenates of general formula Na[trans-RuCl(4)(R(1)R(2)SO)(L)], where R(1)R(2)SO = dimethylsulfoxide (DMSO) or tetramethylenesulfoxide (TMSO) and L = nitrogen donor ligand. The chemical behavior of these complexes has been studied by means of spectroscopic techniques both in slightly acidic distilled water and in phosphate buffered solution at physiological pH. The influence of biological reductants on the chemical behavior is also described. The antitumor properties have been investigated on a number of experimental tumors. Out of the effects observed, notheworthy appears the capability of the tested ruthenates to control the metastatic dissemination of solid metastasizing tumors. The analysis of the antimetastatic action, made in particular on the MCa mammary carcinoma of CBA mouse, has demonstrated a therapeutic value for these complexes which are able to significantly prolong the survival time of the treated animals. The antimetastatic effect is not attributable to a specific cytotoxicity for metastatic tumor cells although in vitro experiments on pBR322 double stranded DNA has shown that the test ruthenates bind to the macromolecule, causing breaks corresponding to almost all bases, except than thymine, and are able to cause interstrand bonds, depending on the nature of the complex being tested, some of which results active as cisplatin itself.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2364872PMC
http://dx.doi.org/10.1155/MBD.1994.41DOI Listing

Publication Analysis

Top Keywords

antitumor properties
8
chemical behavior
8
water-soluble rutheniumiii-dimethyl
4
rutheniumiii-dimethyl sulfoxide
4
complexes
4
sulfoxide complexes
4
complexes chemical
4
chemical behaviour
4
behaviour pharmaceutical
4
pharmaceutical properties
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!