PPARgamma, a member of the peroxisome proliferator-activated receptor family, is overexpressed in prostate cancer. Natural and synthetic ligands of PPARgamma via genomic and nongenomic actions promote cell cycle arrest and apoptosis of several prostate cancer cells, in vitro. Insulin-like growth factor 1 (IGF-1) inhibits the adriamycin-induced apoptosis of PC-3 human prostate cancer cells. Therefore, we have analyzed the ability of two PPARgamma ligands,15dPGJ2 and rosiglitazone, a natural and a synthetic PPARgamma ligand, respectively, to increase the adriamycin-induced cytotoxicity of PC-3 cells and to suppress the IGF-1 survival effect on adriamycin-induced apoptosis of PC-3 cells. Our data revealed that both the PPARgamma ligands increased the adriamycin-induced cytostasis of PC-3 cells, however, only rosiglitazone added to the adriamycin-induced apoptosis of PC-3 cells. In addition, rosiglitazone attenuated the type I IGF receptor (IGF-1R) survival signaling on adriamycin-induced apoptosis of PC-3 cells via its nongenomic action on ERK1/2 and AKT phosphorylation. Because the IGF-1R signaling is probably the most important host tissue (bone) metastasis microenvironment-related survival signaling for prostate cancer cells, we conclude that rosiglitazone effects on IGF-1R-mediated activation of ERK1/2 and AKT could have clinical implications for the management of androgen ablation-refractory and chemotherapy-resistant advanced prostate cancer with bone metastasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2359675PMC
http://dx.doi.org/10.2119/2008-00021.PapageorgiouDOI Listing

Publication Analysis

Top Keywords

pc-3 cells
24
prostate cancer
20
adriamycin-induced apoptosis
16
apoptosis pc-3
16
survival signaling
12
cancer cells
12
cells
9
insulin-like growth
8
growth factor
8
natural synthetic
8

Similar Publications

Dysregulated cellular metabolism is known to be associated with drug resistance in cancer treatment. In this study, we investigated the impact of cellular adaptation to lactic acidosis on intracellular energy metabolism and sensitivity to docetaxel in prostate carcinoma (PC) cells. The effects of curcumin and the role of hexokinase 2 (HK2) in this process were also examined.

View Article and Find Full Text PDF

Prostate cancer remains a significant global health concern, prompting ongoing exploration of novel therapeutic agents. Licochalcone A, a natural product in the chalcone family isolated from licorice root, is characterized by its enone structure and demonstrates antiproliferative activity in the micromolar range across various cell lines, including prostate cancer. Building on our prior success in enhancing curcumin's antiproliferative potency by replacing the substituted phenol with a 1-alkyl-1H-imizadol-2-yl moiety, we applied a similar approach to design a new class of licochalcone A-inspired chalcones.

View Article and Find Full Text PDF

Epigenetic dysregulation is a common feature of cancer. Promoter demethylation of tumor-promoting genes and global DNA hypomethylation may trigger tumor progression. Epigenetic changes are unstable; thus, research has focused on detecting remedies that target epigenetic regulators.

View Article and Find Full Text PDF

Tribulus terrestris L. from the family of Zygophyllaceae, which is rich in saponin compounds, especially diosgenin, has various biological properties, such as anti-inflammation, anti-Alzheimer, anti-obesity, anti-diabetes, anti-leukemia, and anti-cancer activities, due to these compounds. This research aimed to study the diversity of agro-morphological and phytochemical traits and anti-proliferative activity against human prostate cancer cells (PC3) of T.

View Article and Find Full Text PDF

Background: Fluorescence molecular imaging, a potent and non-invasive technique, has become indispensable in medicine for visualizing molecular processes. In surgical oncology, it aids treatment by allowing visualization of tumor cells during fluorescence-guided surgery (FGS). Targeting the urokinase plasminogen activator receptor (uPAR), overexpressed during tissue remodeling and inflammation, holds promise for advancing FGS by specifically highlighting tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!