Expression of an estrogen receptor agonist in differentiating osteoblast cultures.

Proc Natl Acad Sci U S A

Department of Surgery (Plastic Surgery), Yale University School of Medicine, New Haven, CT 06520, USA.

Published: May 2008

Osteoblasts respond in direct and indirect ways to estrogens, and age-dependent changes in hormone levels and bone health can be limited by focused hormone replacement therapy. In this study, we report the release and isolation of an estrogen receptor agonist from osteoblast cultures. This entity reprises many aspects of estradiol activity in isolated osteoblasts, but differs from authentic estradiol by several biochemical and physical criteria. At levels that occur in conditioned medium from differentiating osteoblast cultures, the agonist directly drives gene expression through estrogen-sensitive response elements, activates the obligate osteoblast transcription factor Runx2, and potently enhances Smad-dependent gene expression in response to TGF-beta, but exhibits relatively lesser suppressive effects on gene expression through C/EBP and AP-1-binding protein transcription factors. Estrogen receptor agonist activity is resistant to heating at 100 degrees C and separable from the bulk of the remaining alcohol- and hexane-soluble molecules by C18 chromatography. MS and molecular fragmentation analyses predict a M(r) of 415.2 to 437.2. Therefore, in addition to earlier studies showing that osteoblasts readily respond to and metabolize various sex steroid-like substrates, we find that they also generate a potent estrogen receptor agonist during differentiation in vitro. Changes in the availability of a molecule like this within bone may relate to differences in skeletal integrity with aging or metabolic disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2383941PMC
http://dx.doi.org/10.1073/pnas.0800085105DOI Listing

Publication Analysis

Top Keywords

estrogen receptor
16
receptor agonist
16
osteoblast cultures
12
gene expression
12
differentiating osteoblast
8
osteoblasts respond
8
agonist
5
expression
4
expression estrogen
4
receptor
4

Similar Publications

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

This study investigates the role of flavonoid Icaritin (ICT) in estrogen-deficient ovariectomized (OVX) female mice by activating the Estrogen receptor (ER)/ Phosphatidylinositol 3-kinase (PI3K)/Protein kinase B (Akt) signaling pathway, potentially delaying Parkinson's disease (PD) progression post-castration. Seventy-five 8-week-old C57BL/6J female mice underwent ovariectomy, followed by MPTP (20 mg/kg) injection for 7 days. ICT (20 mg/kg) was administered for 14 days, and motor function was assessed using various behavioral tests.

View Article and Find Full Text PDF

[Solid, endometrial-like and transitional growth patterns of ovarian high-grade serous carcinoma: a clinicopathological analysis of 25 cases].

Zhonghua Bing Li Xue Za Zhi

February 2025

Department of Pathology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China.

To investigate the clinicopathological characteristics of solid, endometrial-like and transitional (SET) cell growth subtype in high-grade serous ovarian carcinoma (HGSC). Clinical data of 25 cases of HGSC-SET were collected from January 2020 to March 2024 at the Affiliated Suzhou Hospital of Nanjing Medical University, and their histological features were analyzed. Immunohistochemical stains were used to analyze the expression of ER, PR, PAX8, WT-1, p16, p53 and Ki-67.

View Article and Find Full Text PDF

2-Ethylhexyl diphenyl phosphate (EHDPP) is a replacement flame-retardant commonly found in several environmental matrices and human biospecimens. Although some adverse effects of EHDPP have been identified, the endocrine-disrupting effects of EHDPP and its key metabolites on the human estrogen receptor (ER) are largely unknown. Herein, we report for the first time that EHDPP, at concentrations found in the environment and humans, significantly promoted estrogenic activity and synergized with 17β-estradiol-induced ER transactivation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!