Capsaicin pretreatment attenuates LPS-induced hypothermia through TRPV1-independent mechanisms in chicken.

Life Sci

Department of Basic Veterinary Science, Laboratory of Physiology, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.

Published: June 2008

It has been demonstrated that chicken TRPV1 (transient receptor potential vanilloid of subtype-1) is insensitive to capsaicin (CAP), and therefore, a chicken model is suitable to analyze the CAP-sensitive TRPV1-independent pathway. We elucidated here the possible involvement of the pathway in hypothermia induced by bacterial endotoxin (lipopolysaccharide, LPS) in chickens. Chicks were pretreated with CAP (10 mg/kg, iv) at 1, 2 and 3 days of age to desensitize them towards the CAP-sensitive pathway. An intravenous injection of LPS in 4-day-old chicks caused progressive hypothermia, ending with collapse and 78% mortality within 12 h after injection. The CAP pretreatment rescued the LPS-induced endotoxin shock and hypothermia in chicks. LPS-induced iNOS expression as well as NO production in liver and lung was suppressed by CAP pretreatment. CAP pretreatment also attenuated hypothermia due to exposure of chicks to cold ambient temperature. These findings suggest that a CAP-sensitive TRPV1-independent pathway may be involved in pathophysiological hypothermic reactions through the mediation of NO in chickens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2008.04.003DOI Listing

Publication Analysis

Top Keywords

cap pretreatment
12
cap-sensitive trpv1-independent
8
trpv1-independent pathway
8
hypothermia
5
cap
5
capsaicin pretreatment
4
pretreatment attenuates
4
attenuates lps-induced
4
lps-induced hypothermia
4
hypothermia trpv1-independent
4

Similar Publications

Purpose: This study assesses the impact of Cold Atmospheric Pressure Plasma (CAP) pretreatment on the bond strength of two-piece hybrid ceramic abutment crowns in implant dentistry. The objective is to ascertain whether CAP can be employed as an alternative or complementary technique to conventional methods.

Methods: 80 titanium bases and 80 VITA ENAMIC polymer-infiltrated ceramic network (PICN) crowns were divided into 8 groups (n = 10) based on different surface pretreatments of the crowns before cementation: no treatment (A), hydrofluoric acid (HF) (B), HF and silane (C), silane (D), CAP (AP), HF and CAP (BP), HF, CAP, and silane (CP), and CAP and silane (DP).

View Article and Find Full Text PDF

Time-resolved fluorescence/visual dual-readout nanobiosensors for the detection of aflatoxin B, benzo(α)pyrene and capsaicin in edible oils using a miniaturized paper analytical device.

Food Chem

March 2025

College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences,Wuhan 430062, China; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, China; Food Safety Research Institute, HuBei University, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Xianghu Laboratory, Hangzhou 311231, China. Electronic address:

Edible oil safety impacts food safety and consumer health. The typical pollutants-aflatoxin B (AFB) and benzo(α)pyrene (BaP), and kitchen waste oil-are significant hazards in edible oil consumption. Herein, we developed a dual-readout lateral flow immunoassay (tdLFIA) for the multi-quantitative detection of AFB, BaP and capsaicin (CAP).

View Article and Find Full Text PDF

Fe-capsaicin nanozyme attenuates sepsis-induced acute lung injury by regulating the functions of macrophages.

Front Bioeng Biotechnol

November 2024

Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, China.

Article Synopsis
  • In sepsis, macrophages play a crucial role in acute lung injury (ALI), and previous research showed that Iron-capsaicin-based nanoparticles (Fe-CAP NPs) can reduce inflammation associated with ALI.
  • The study involved treating bone marrow-derived macrophages and mice with LPS and observing changes in inflammatory markers and cellular behavior, using various laboratory techniques.
  • Results indicated that Fe-CAP NPs decreased harmful macrophage activity (reflected by reduced CD86 and increased CD206 expression), lowered levels of reactive oxygen species (ROS), and improved lung tissue health, suggesting their potential therapeutic benefits in sepsis-induced ALI.
View Article and Find Full Text PDF

Remineralisation of mineral-deficient dentine induced by experimental ion-releasing materials in combination with a biomimetic dual-analogue primer.

J Dent

January 2025

Dental Biomaterials and Minimally Invasive Dentistry, Department of Dentistry, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain. Electronic address:

Objectives: Evaluate the remineralisation ability of experimental resin-based materials containing Fluoride-Doped Calcium Phosphate (FDCP), applied in mineral-deficient dentine in combination with a biomimetic dual-analogue primer.

Methods: Artificial dentine carious lesions were created in occlusal cavities of human molars. An experimental resin-based adhesive and flowable composite, containing FDCP (10wt% and 20wt%, respectively), were applied (±) with a biomimetic primer containing polyacrylic acid and sodium tripolyphosphate.

View Article and Find Full Text PDF

Background & Aims: Surgery is the only curative therapeutic option for resectable extrahepatic cholangiocarcinoma, but recurrence is common, and prognosis is poor. There is an unmet clinical need for improved decision-making regarding adjuvant chemotherapy (ACT). Herein, we evaluated the usefulness of monitoring longitudinal circulating tumor DNA (ctDNA) for molecular residual disease (MRD) in patients from the STAMP trial, which compares the efficacy of adjuvant capecitabine (CAP) vs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!