Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The neurotrophic factors play an important role in the maintenance of neurone viability and neuronal communication which are considered to be altered in schizophrenia. Subchronic application of ketamine (Ket) was found to be a useful model in schizophrenia research. To further validate this model the mRNA levels of neurotrophic factors NGF, NT-3, and BDNF and their receptors TrkA, TrkB, and TrkC, respectively, were measured in different brain areas in Ket-pretreated rats subchronically dosed with the atypical antipsychotic drug risperidone (Ris). With the exception of NGF in the frontal cortex, Ket pretreatment did change NGF, NT-3, and BDNF mRNA levels in the frontal cortex, the hippocampus, the striatum, the thalamus/hypothalamus region, and in the cerebellum. These changes correspond with changes at their tyrosine kinase receptors. Ris treatment normalised altered NT-3 levels in the hippocampus and balanced BDNF levels in the same structure. It was concluded that the Ket model might reflect distinct alterations in neurotrophic factor activity as found in schizophrenic patients and, moreover, that Ris treatment rebalances disturbed neurotrophic factor activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/157340608784325124 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!