A series of quinoxalines variously substituted, namely 3-arylthiomethyl-1,6-dimethylquinoxalin-2-ones (6a-f), 3-arylthiomethyl-1-benzyl-7-trifluoromethylquinoxalin-2-ones (8a-g) and 2-arylthiomethyl-3-benzyloxy-6-trifluoro-methylquinoxalines (10a,b,e-h), were synthesized and compared with previous arylphenoxymethylquinoxalines (1a-f, 2a-f and 3a-b). The purpose was to verify whether the replacement of oxygen with sulphur atom and the insertion of different substituents on the phenyl side chain were able to improve the capability to inhibit the Pgp pump and restore the antiproliferative activity of clinically useful drugs, such as doxorubicin (Doxo), vincristine (VCR) and etoposide (VP16), in drug-resistant human nasopharyngeal carcinoma KB cells (KB(wt), KB(MDR), KB(7D) and KB(V20C)). Furthermore, 2,3-bis(aryloxy-methyl)-6-trifluoromethylquinoxalines (13a-c) were designed with the objective to evaluate the capability of the double side chain to potentiate the antiproliferative activity of the drugs tested. Biological assays showed that title compounds were, in general, endowed with good activity as Pgp inhibitors. In particular compound 3a, bearing 2-CONHPh substituent on phenoxymethyl side chain, resulted the most effective, while the double side chain (compound 13c) gives the ability to inhibit a different MRP pump (a membrane glycoprotein named mrp). Furthermore, we can conclude that replacement of oxygen with sulphur atom did not improve the biological activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/157340608784325197 | DOI Listing |
Mol Divers
January 2025
School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China.
The p53 protein is regarded as the "Guardian of the Genome," but its mutation is tumor progression and present in more than half of malignant tumors. The pro-metastatic property of mutant p53 makes a strong argument for targeting mutant p53 with new therapeutic strategies. However, mutant p53 was considered as a challenging target for drug discovery due to the lack of small molecular binding pockets.
View Article and Find Full Text PDFStructure
January 2025
Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK. Electronic address:
The core component of the actin cytoskeleton is the globular protein G-actin, which reversibly polymerizes into filaments (F-actin). Budding yeast possesses a single actin that shares 87%-89% sequence identity with vertebrate actin isoforms. Previous structural studies indicate very close overlap of main-chain backbones.
View Article and Find Full Text PDFBioorg Chem
January 2025
Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002 Saudi Arabia. Electronic address:
The discovery of novel anti-cancer drugs motivated us to synthesize a new series of triple 1,2,3-triazole-based arm scaffolds featuring distinct un functionalized alkyl and/or aryl side chains with possible anti-cancer action using the click chemistry approach under both conventional and green microwave irradiation (MWI) methods. The Cu(I) catalyzed cycloaddition reaction of targeted tris-alkyne with un functionalized aliphatic and aromatic azides has been adopted as an efficient approach for synthesizing the desired click adducts. Microwave irradiation improved the synthetic processes, resulting in higher yields and faster reaction times.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Faculty of Chemistry and Pharmacy, University of Opole, Oleska 48, 45-052 Opole, Poland.
O-Methyldehydroserine, ΔSer(Me), is a non-standard α,β-dehydroamino acid, which occurs naturally in Cyrmenins with potential pharmaceutical application. The C-terminal part and the side chain of the ΔSer(Me) residue constitute the β-methoxyacrylate unit, responsible for antifungal activity of Cyrmenins. The short model, Ac-ΔSer(Me)-OMe, was analyzed considering the geometrical isomer Z () and E ().
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independenței Str., 050095 Bucharest, Romania.
Glycosylation is a critical post-translational modification that influences protein folding, stability and function. While extensively studied in extracellular and intracellular regions, glycosylation within transmembrane (TM) regions and at membrane interfaces remains poorly understood. This study aimed to map O- and N-glycosylation sites in these regions using a comprehensive database search and structural validation where possible.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!