The electronic properties of cation radical salts derived from organometallic mixed-ligand complexes [(ppy)Au(S-S)](ppy- = C-dehydro-2-phenylpyridine(-); S-S(2-) = dithiolene ligand) with Au(III)-C sigma-bond were investigated. A 2:1 salt complex [(ppy)Au(C8H4S8)]2[PF6] (C8H4S8(2-) = 2-((4,5-ethylenedithio)-1,3-dithiole-2-ylidene)-1,3-dithiole-4,5-dithiolate(2-)) exhibited semiconductive behavior under ambient pressure (rho rt = 2.6 Omega cm, Ea = 0.03 eV). Magnetic measurements show that it is a Mott insulator close to the metal-insulator boundary. Raman and infrared spectra have revealed that the complex has a quasi-one-dimensional dimeric structure consisting of uniformly charged donor molecules. The complex exhibits metallic behavior at pressures above 0.8 GPa. In contrast, a similar compound [(ppy)Au(C8H4S6O2)]2[BF4] (C8H4S6O2(2-) = 2-((4,5-ethylenedioxy)-1,3-dithiole-2-ylidene)-1,3-dithiole-4,5-dithiolate(2-)) is a band insulator.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic800176qDOI Listing

Publication Analysis

Top Keywords

electrical properties
4
properties electronic
4
electronic states
4
states molecular
4
molecular conductors
4
conductors based
4
based unsymmetrical
4
unsymmetrical organometallic-dithiolene
4
organometallic-dithiolene goldiii
4
goldiii complexes
4

Similar Publications

Skin-like bioelectronics offer a transformative technological frontier, catering to continuous and real-time yet highly imperceptible and socially discreet digital healthcare. The key technological breakthrough enabling these innovations stems from advancements in novel material synthesis, with unparalleled possibilities such as conformability, miniature footprint, and elasticity. However, existing solutions still lack desirable properties like self-adhesivity, breathability, biodegradability, transparency, and fail to offer a streamlined and scalable fabrication process.

View Article and Find Full Text PDF

High Mobility Emissive Organic Semiconductors for Optoelectronic Devices.

J Am Chem Soc

January 2025

Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.

High mobility emissive organic semiconductors (HMEOSCs) are a kind of unique semiconducting material that simultaneously integrates high charge carrier mobility and strong emission features, which are not only crucial for overcoming the performance bottlenecks of current organic optoelectronic devices but also important for constructing high-density integrated devices/circuits for potential smart display technologies and electrically pumped organic lasers. However, the development of HMEOSCs is facing great challenges due to the mutually exclusive requirements of molecular structures and packing modes between high charge carrier mobility and strong solid-state emission. Encouragingly, considerable advances on HMEOSCs have been made with continuous efforts, and the successful integration of these two properties within individual organic semiconductors currently presents a promising research direction in organic electronics.

View Article and Find Full Text PDF

Influence of Graphene Oxide on Mechanical and Morphological Properties of Nafion Membranes.

Nanomaterials (Basel)

January 2025

Département de Génie Électrique, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montreal, QC H3C 1K3, Canada.

This study explored the influence of graphene oxide (GO) on morphological and mechanical properties of Nafion 115 membranes with the objective of enhancing the mechanical properties of the most widely employed membrane in Proton Exchange Membrane Water Electrolyzers (PEMWE) applications. The membrane surface was modified by ultrasonically spraying a GO solution and different annealing temperatures were tested. Scanning Electron Microscopy (SEM) cross-sectional images revealed that annealing the composite membranes was sufficient to favor an interaction between the graphene oxide and the surface of the Nafion membranes.

View Article and Find Full Text PDF

Electrocatalytic and Photocatalytic N Fixation Using Carbon Catalysts.

Nanomaterials (Basel)

January 2025

Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.

Carbon catalysts have shown promise as an alternative to the currently available energy-intensive approaches for nitrogen fixation (NF) to urea, NH, or related nitrogenous compounds. The primary challenges for NF are the natural inertia of nitrogenous molecules and the competitive hydrogen evolution reaction (HER). Recently, carbon-based materials have made significant progress due to their tunable electronic structure and ease of defect formation.

View Article and Find Full Text PDF

The results of a comprehensive investigation into the structure and properties of nanodiamond soot (NDS), obtained from the detonation of various explosive precursors (trinitrotoluene, a trinitrotoluene/hexogen mixture, and tetryl), are presented. The colloidal behavior of the NDS particles in different liquid media was studied. The results of the scanning electron microscopy, dynamic light scattering, zeta potential measurements, and laser diffraction analysis suggested a similarity in the morphology of the NDS particle aggregates and agglomerates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!