Aim: The aim of this study was to investigate the influence of light curing method, composite shade, and depth of cure on composite microhardness.

Methods And Materials: Forty-eight specimens with 4 mm of depth were prepared with a hybrid composite (Filtek Z-100, 3M ESPE); 24 with shade A1 and the remaining with shade C2. For each shade, two light curing units (LCUs) were used: a quartz-tungsten-halogen (QTH) LCU (Optilight Plus - Gnatus) and a light emitting diode (LED) LCU (LEC 470 II - MM Optics). The LED LCU was tested using two exposure times (LED 40 seconds and LED 60 seconds). After 24-hour storage, three indentations were made at mm depth intervals using a Knoop indenter. Data were submitted to three-way analysis of variance (ANOVA) and Tukey's test (p<0.05).

Results: The three factors tested (light curing method, shade, and depth) had a significant influence on the composite microhardness (p<0.05). All groups presented similar hardness values in the first mm, except for composite shade C2 cured with LED for 40 seconds. The hardness decreased with depth, especially for shade C2 for 40 seconds. Increasing light-curing time with LED produced hardness values similar to the QTH.

Conclusions: The light curing method including variations of time, the depth of cure, and the composite shade influence the composite microhardness.

Clinical Significance: Clinicians should avoid thicker increments when working with composite restorations. Extended light-curing time might be indicated depending on the composite shade and on the light-curing device.

Download full-text PDF

Source

Publication Analysis

Top Keywords

light curing
12
influence light
8
curing method
8
method composite
8
composite shade
8
shade depth
8
depth cure
8
led lcu
8
led seconds
8
composite
5

Similar Publications

Direct printed aligners (DPAs) offer benefits like the ability to vary layer thickness within a single DPA and to 3D print custom-made removable orthodontic appliances. The biocompatibility of appliances made from Tera Harz TA-28 (Graphy Inc., Seoul, South Korea) depends on strict adherence to a standardized production and post-production protocol, including UV curing.

View Article and Find Full Text PDF

The effectiveness of ultraviolet-C light-emitting diodes (UVC LEDs) is currently limited by the lack of suitable encapsulation materials, restricting their use in sterilization, communication, and in vivo cancer tumor inhibition. This study evaluates various silicone oils for UVC LED encapsulation. A material aging experiment was conducted on CF1040 (octamethylcyclotetrasiloxane), HF2020 (methyl hydro polysiloxanes), and MF2020-1000 (polydimethylsiloxane) under UVC radiation for 1000 h.

View Article and Find Full Text PDF

Quantum dot-polymer composites have the advantages of high luminescent quantum yield (PLQY), narrow emission half-peak full width (FWHM), and tunable emission spectra, and have broad application prospects in display and lighting fields. Research on quantum dots embedded in polymer films and plates has made great progress in both synthesis technology and optical properties. However, due to the shortcomings of quantum dots, such as cadmium selenide (CdSe), indium phosphide (InP), lead halide perovskite (LHP), poor water, oxygen, and light stability, and incapacity for large-scale synthesis, their practical application is still restricted.

View Article and Find Full Text PDF

Adolescence is defined as a population ranging from ten to nineteen years old. Permanent teeth in adolescents are of critical significance as they are actively involved in mastication, contribute to aesthetic appearance, play a role in pronunciation, and are integral to the growth and development of the stomatognathic system. Specifically, permanent teeth in adolescents comprise those with incomplete root development and those with complete root development but unstable gingival margin positions.

View Article and Find Full Text PDF

Laminated Two-Terminal All-Perovskite Tandem Solar Cells with Transparent Conductive Adhesives.

ACS Appl Mater Interfaces

January 2025

Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany.

Established sequential deposition of multilayer two-terminal (2T) all-perovskite tandem solar cells possesses challenges for fabrication and limits the choice of materials and device architecture. In response, this work represents a lamination process based on a transparent and conductive adhesive that interconnects the wide-bandgap (WBG) perovskite top solar cell and the narrow-bandgap (NBG) perovskite bottom solar cell in a monolithic 2T all-perovskite tandem solar cell. The transparent conductive adhesive (TCA) layer combines Ag-coated poly(methyl methacrylate) microspheres with an optical adhesive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!