The Drosophila mats gene plays a critical role in growth control. Using molecular genetic approaches we investigated how mats is regulated in development. A 2236-bp genomic sequence that contains entire mats including upstream and downstream intergenic regions can rescue mats mutant phenotypes, indicating that regulatory elements necessary for proper mats expression are mostly retained. However, constructs without the upstream or downstream intergenic region failed to rescue mats mutants, demonstrating the functional importance of these sequences. Moreover, mats expression is reduced in mats(e17), a mats allele with over one-third of the downstream intergenic region deleted. Consistent with a model that the downstream intergenic region is critical for mats activity, this sequence contains evolutionarily conserved elements and has enhancer activities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2008.04.050DOI Listing

Publication Analysis

Top Keywords

downstream intergenic
20
upstream downstream
12
intergenic region
12
mats
9
intergenic regions
8
rescue mats
8
mats expression
8
intergenic
5
regions critical
4
critical mob
4

Similar Publications

Pathological roles of lncRNA HOTAIR in liver cancer: An updated review.

Gene

December 2024

Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq.

Liver cancer ranks as the sixth most prevalent form of cancer and stands as the fourth leading cause of cancer-related fatalities on a global scale. The two primary types of liver cancer are hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). While ICC originates from the bile ducts, HCC develops from hepatocytes, which are the primary functional cells of the liver.

View Article and Find Full Text PDF

The aim of this study was to investigate whether long intergenic non-coding RNA 1929 (LINC01929), a novel long non-coding RNA, could serve as a prognostic biomarker for various tumours and explore its function. The expression and prognosis of LINC01929 across 33 different tumour types in patients in the Cancer Genome Atlas (TCGA) database were analysed. Also, the correlation between LINC01929 expression, tumour mutational burden (TMB), microsatellite instability (MSI), immune checkpoint status and immune cell infiltration was examined.

View Article and Find Full Text PDF

Background: Lung adenocarcinoma is the most common type of lung cancer, accounting for approximately 40% of all lung cancer cases, and has the highest incidence among lung cancer subtypes. Recent studies have suggested that long non-coding RNAs (lncRNAs) play a crucial role in the initiation and progression of lung adenocarcinoma.

Methods: Based on integrative analysis through databases, we screened Long intergenic non-protein coding RNA 00839 (LINC00839) as one of the most highly upregulated lncRNAs in lung adenocarcinoma.

View Article and Find Full Text PDF

(), the causative agent of tuberculosis, is a major global health concern. TetR family repressors (TFRs) are important for 's adaptation to the human host environment. Our study focuses on one notable repressor, Mce3R, composed of an unusual double TFR motif.

View Article and Find Full Text PDF

OGU: A Toolbox for Better Utilising Organelle Genomic Data.

Mol Ecol Resour

November 2024

State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.

Organelle genomes serve as crucial datasets for investigating the genetics and evolution of plants and animals, genome diversity, and species identification. To enhance the collection, analysis, and visualisation of such data, we have developed a novel open-source software tool named Organelle Genome Utilities (OGU). The software encompasses three modules designed to streamline the handling of organelle genome data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!