Expression of transforming growth factor beta isoforms and their roles in tendon healing.

Wound Repair Regen

Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong.

Published: July 2008

Transforming growth factor beta (TGF-beta) plays active roles in tendon healing. However, the differential effects of TGF-beta isoforms on tendon healing have not been investigated. In cultured tendon fibroblasts, we tested the effects of TGF-beta1, beta2, and beta3 on the mRNA levels of COL1A1 and COL3A1 by quantitative real-time polymerase chain reaction. We also investigated the expression of TGF-beta isoforms, TGF-beta receptors, procollagen Type I and Type III in a rat model of tendon healing. We found that TGF-beta3 exhibited the highest potency in stimulating COL1A1 and COL3A1. TGF-beta1 exerted antagonistic effects to TGF-beta2 and beta3. All TGF-beta isoforms and procollagen Type I were confined to the edges of the healing tendon at day 28 postinjury. Our results indicated that interaction of TGF-beta isoforms exist in the regulation of collagen synthesis in tendon fibroblasts. Their effects may be further complicated by uneven spatial distribution of TGF-beta and TGF-beta receptors in healing tendons.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1524-475X.2008.00379.xDOI Listing

Publication Analysis

Top Keywords

tendon healing
16
tgf-beta isoforms
16
transforming growth
8
growth factor
8
factor beta
8
roles tendon
8
tgf-beta
8
tendon fibroblasts
8
col1a1 col3a1
8
tgf-beta receptors
8

Similar Publications

A high prevalence of rotator cuff tears presents a major clinical challenge. A better understanding of the molecular mechanisms underlying enthesis development and healing is needed for developing treatments. We recently identified hedgehog (Hh)-lineage cells critical for enthesis development and repair.

View Article and Find Full Text PDF

Inhibiting Friction-Induced Exogenous Adhesion via Robust Lubricative Core-Shell Nanofibers for High-Quality Tendon Repair.

Biomacromolecules

January 2025

Department of Hepatobiliary Surgery, Hebei International Joint Research Center for Digital Twin Diagnosis and Treatment of Digestive Tract Tumors, Baoding Key Laboratory of Precision Diagnosis and Treatment of Digestive Tract Tumors, Affiliated Hospital of Hebei University, Baoding 071000, China.

Friction is the trigger cause for excessive exogenous adhesion, leading to the poor self-repair of the tendon. To address this problem, we developed electrospun dual-functional nanofibers with surface robust superlubricated performance and bioactive agent delivery to regulate healing balance by reducing exogenous adhesion and promoting endogenous healing. Coaxial electrospinning and our previous developed in situ robust nanocoating growth techniques were employed to create the lubricative/repairable core-shell structured nanofibrous membrane (L/R-NM).

View Article and Find Full Text PDF

Background: The paratenon has been shown to promote Achilles tendon healing, but the evidence supporting the role of paratenon protection technique in Achilles tendon repair is sparse. We retrospectively assessed the results of a paratenon-sparing repair technique vs an open giftbox repair of Achilles tendon ruptures.

Methods: Patients with Achilles tendon rupture who underwent surgical treatment at our hospital between January 2015 and August 2021 were retrospectively reviewed.

View Article and Find Full Text PDF

Mini-open transosseous repair with bursal augmentation improves outcomes in massive rotator cuff tears.

Sci Rep

January 2025

Department of Orthopedics and Traumatology, KasrAlAinyFacultyofMedicine, Cairo University, Al- Manial, Cairo, Egypt.

Treatment of Massive rotator cuff tears (MRCT) is difficult, with high rates of retears. Using biological augmentation in the form of the highly vascular subacromial bursa, was used to improve tendon healing. This work aimed to evaluate the results of arthroscopic guided mini-open transosseous repair with bursal augmentation in the treatment of MRCTs in a five-step approach.

View Article and Find Full Text PDF

Inadequate tendon healing and heterotopic bone formation result in substantial pain and disability, yet the specific cells responsible for tendon healing remain uncertain. Here we identify a CD26 tendon stem/progenitor cells residing in peritendon, which constitutes a primitive stem cell population with self-renewal and multipotent differentiation potentials. CD26 tendon stem/progenitor cells migrate into the tendon midsubstance and differentiation into tenocytes during tendon healing, while ablation of these cells led to insufficient tendon healing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!