The recently introduced non-stochastic and stochastic bond-based linear indices are been generalized to codify chemical structure information for chiral drugs, making use of a trigonometric 3D-chirality correction factor. These improved modified descriptors are applied to several well-known data sets to validate each one of them. Particularly, Cramer's steroid data set has become a benchmark for the assessment of novel quantitative structure activity relationship methods. This data set has been used by several researchers using 3D-QSAR approaches such as Comparative Molecular Field Analysis, Molecular Quantum Similarity Measures, Comparative Molecular Moment Analysis, E-state, Mapping Property Distributions of Molecular Surfaces, and so on. For that reason, it is selected by us for the sake of comparability. In addition, to evaluate the effectiveness of this novel approach in drug design we model the angiotensin-converting enzyme inhibitory activity of perindoprilate's sigma-stereoisomers combinatorial library, as well as codify information related to a pharmacological property highly dependent on the molecular symmetry of a set of seven pairs of chiral N-alkylated 3-(3-hydroxyphenyl)-piperidines that bind sigma-receptors. The validation of this method is achieved by comparison with earlier publications applied to the same data sets. The non-stochastic and stochastic bond-based 3D-chiral linear indices appear to provide a very interesting alternative to other more common 3D-QSAR descriptors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcc.20964 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!