Feingold syndrome (FS) is the most frequent cause of familial syndromic gastrointestinal atresia and follows autosomal dominant inheritance. FS is caused by germline mutations in or deletions of the MYCN gene. Previously, 12 different heterozygous MYCN mutations and two deletions containing multiple genes including MYCN were described. All these mutations result in haploinsufficiency of both the canonical MYCN protein and the shorter isoform, DeltaMYCN. We report 11 novel mutations including seven mutations in exon 2 that result in a premature termination codon (PTC) in the long MYCN transcript. Moreover, we have identified a PTC in exon 1 that only affects the DeltaMYCN isoform, without a phenotypic effect. This suggests that mutations in only DeltaMYCN do not contribute to the FS. Additionally, we found three novel deletions encompassing MYCN. Together with our previous report we now have a total of four missense mutations in the DNA binding domain, 19 PTCs of which six render the transcript subject to nonsense-mediated decay (NMD), and five larger deletions in a total of 77 patients. We have reviewed the clinical features of these patients, and found that digital anomalies, e.g., brachymesophalangy and toe syndactyly, are the most consistent features, present in 100% and 97% of the patients, respectively. Small head circumference was present in 89% of the cases. Gastrointestinal atresia remains the most important major congenital anomaly (55%), but cardiac and renal anomalies are also frequent. We suggest that the presence of brachymesophalangy and toe syndactyly in combination with microcephaly is enough to justify MYCN analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/humu.20750 | DOI Listing |
Front Oncol
May 2024
Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
HGG Adv
October 2023
Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan. Electronic address:
MYCN, a member of the MYC proto-oncogene family, regulates cell growth and proliferation. Somatic mutations of MYCN are identified in various tumors, and germline loss-of-function variants are responsible for Feingold syndrome, characterized by microcephaly. In contrast, one megalencephalic patient with a gain-of-function variant in MYCN, p.
View Article and Find Full Text PDFBMJ Case Rep
March 2023
Genetics Department of Faculty of Medicine, Universidade do Porto, Porto, Portugal.
We report a case of fetal microcephaly found during the second trimester ultrasound and confirmed by further ultrasound scans and fetal MRI. The array comparative genomic hybridisation analysis of the fetus and the male parent showed a 1.5 Mb deletion overlapping the Feingold syndrome region, an autosomal dominant syndrome that can cause microcephaly, facial/hand abnormalities, mild neurodevelopmental delay and others.
View Article and Find Full Text PDFMol Syndromol
December 2022
Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey.
Introduction: Feingold syndrome type 2 (FGLDS2) is an ultra-rare genetic disorder characterized by short stature, microcephaly, digital abnormalities, and intellectual disability. Until now, 22 patients have been reported in the literature. FGLDS2 is caused by a germline heterozygous deletion of 13q resulting in haploinsufficiency of the gene.
View Article and Find Full Text PDFPLoS Biol
November 2022
Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China.
Feingold syndrome type 1, caused by loss-of-function of MYCN, is characterized by varied phenotypes including esophageal and duodenal atresia. However, no adequate model exists for studying the syndrome's pathological or molecular mechanisms, nor is there a treatment strategy. Here, we developed a zebrafish Feingold syndrome type 1 model with nonfunctional mycn, which had severe intestinal atresia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!