A irreversible Hg2+ selective ratiometric fluorescence probe FR, a fluorescein fluorophore linked to a rhodamine B hydrazide by a thiourea spacer, was designed and synthesized. The developed probe FR exhibited great ratiometric fluorescence enhancement and remarkable yellow-magenta color change toward Hg2+ with excellent selectivity in aqueous acetone solution, and the ratiometric fluorescence response to Hg2+ was not interfered by other metal cations including Fe3+, Co2+, Ni2+, Cr3+, Zn2+, Pb2+, Cd2+, Ca2+, Mg2+, Ba2+ and Mn2+. The linear range and the detection limit of this supposed ratiometric fluorescence method for Hg2+ were 0.0-10.0x10(-6) and 5x10(-8) M, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10895-008-0365-7 | DOI Listing |
Dev Dyn
January 2025
Department of Medicine, Michigan State University College of Human Medicine, East Lansing, Michigan, USA.
Disruption of extracellular pH and proton-sensing can profoundly impact cellular and protein functions, leading to developmental defects. To visualize changes in extracellular pH in the developing embryo, we generated a zebrafish transgenic line that ubiquitously expresses the ratiometric pH-sensitive fluorescent protein pHluorin2, tethered to the extracellular face of the plasma membrane using a glycosylphosphatidylinositol (GPI) anchor. Monitoring of pHluorin2 with ratiometric fluorescence revealed dynamic and discrete domains of extracellular acidification over the first 72 h of embryonic development.
View Article and Find Full Text PDFAnal Methods
January 2025
Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India.
A new rhodamine based turn on florescent probe ()-3',6'-bis(ethylamino)-2-(((6-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methylene)amino)-2',7'-dimethylspiro[isoindoline-1,9'-xanthen]-3-one (RME) was efficiently synthesized through a simple condensation reaction of 2-amino-3',6'-bis(ethylamino)-2',7'-dimethylspiro[isoindoline-1,9'-xanthen]-3-one and 6-methoxy-2-oxo-1,2-dihydroquinoline-3-carbaldehyde. The receptor RME is highly non-fluorescent and when copper ions (Cu ions) are added in DMF/water (1 : 2, v/v) medium, the receptor RME exhibits a specific "turn-on" colorimetric and fluorometric response. Moreover, RME binding with Cu ions produced a remarkable color variation that was perceptible to the human eye, changing from colorless to pink.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
The adsorption of DNA probes onto nanomaterials represents a promising bioassay technique, generally employing fluorescence or catalytic activity to generate signals. A significant challenge is maintaining the catalytic activity of chromogenic catalysts during detection while enhancing accuracy by overcoming the limitations of single-signal transmission. This article presents an innovative multimodal analysis approach that synergistically combines the oxidase-like activity of Fe-N-C nanozyme (Fe-NC) with red fluorescent carbon quantum dots (R-CQDs), further advancing the dual-mode analysis method utilizing R-CQDs@Fe-NC.
View Article and Find Full Text PDFAnal Methods
January 2025
Jiangxi University of Chinese Medicine, Nan Chang, Jiangxi 330004, China.
This study reports a novel ratiometric fluorescence sensor based on a tetraphenylethylene-bipyridine covalent organic framework (TPE-Bpy-COF) for the sensitive detection of Cu, leveraging the unique coordination properties of the bipyridine moieties. The interaction between Cu and the nitrogen atoms in the bipyridine units induces fluorescence quenching at 500 nm through an efficient host-guest electron transfer mechanism, where excited-state electrons from the COF framework are transferred to the vacant orbitals of Cu. Upon excitation at 410 nm, the sensor exhibits a primary emission peak at 500 nm, which is quenched in the presence of Cu, while an overtone peak at 820 nm remains stable, serving as an internal reference for ratiometric measurements and significantly enhancing the accuracy and reliability of the sensor.
View Article and Find Full Text PDFPhotochem Photobiol Sci
January 2025
CNRS, Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, 91405, Orsay, France.
The precise monitoring of pH is critical in various applications, particularly in biology-related areas. In this work, we report the synthesis and characterization of a novel cyanine-based fluorescent pH sensor with a pK around 6. This pH-sensitive dye features a cyanine chromophore coupled to a piperazine moiety, which modulates the protonation equilibrium and thus the optical response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!