S(N)1-type alkylating agents such as N-ethyl-N-nitrosourea (ENU) are very potent mutagens. They act by transferring their alkyl group to DNA bases, which, upon mispairing during replication, can cause single base pair mutations in the next replication cycle. As DNA mismatch repair (MMR) proteins are involved in the recognition of alkylation damage, we hypothesized that ENU-induced mutation rates could be increased in a MMR-deficient background, which would be beneficial for mutagenesis approaches. We applied a standard ENU mutagenesis protocol to adult zebrafish deficient in the MMR gene msh6 and heterozygous controls to study the effect of MMR on ENU-induced DNA damage. Dose-dependent lethality was found to be similar for homozygous and heterozygous mutants, indicating that there is no difference in ENU resistance. Mutation discovery by high-throughput dideoxy resequencing of genomic targets in outcrossed progeny of the mutagenized fish did also not reveal any differences in germ line mutation frequency. These results may indicate that the maximum mutation load for zebrafish has been reached with the currently used, highly optimized ENU mutagenesis protocol. Alternatively, the MMR system in the zebrafish germ line may be saturated very rapidly, thereby having a limited effect on high-dose ENU mutagenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1093/mutage/gen019DOI Listing

Publication Analysis

Top Keywords

enu mutagenesis
16
mismatch repair
8
zebrafish germ
8
mutagenesis protocol
8
enu
6
mutagenesis
5
repair deficiency
4
deficiency enhance
4
enhance enu
4
zebrafish
4

Similar Publications

Introduction: Programmed death-1 (PD-1) is a negative regulator of immune responses. Upon deletion of PD-1 in mice, symptoms of autoimmunity developed only after they got old. In a model experiment in cancer immunotherapy, PD-1 was shown to prevent cytotoxic T lymphocytes from attacking cancer cells that expressed neoantigens derived from genome mutations.

View Article and Find Full Text PDF

The mechanisms of epileptogenesis after brain injury, ischemic stroke, or brain tumors have been extensively studied. As a result, many effective antiseizure drugs have been developed. However, there are still many patients who are resistant to therapy.

View Article and Find Full Text PDF
Article Synopsis
  • - MYCN amplification is linked to poor outcomes in childhood neuroblastoma and the study investigates the signaling dependencies associated with it through genetic manipulation in mice.
  • - A mutation in the RNF121 gene was found to result in decreased tumor formation, with RNF121 playing a crucial role in enhancing MYCN protein stability and contributing to tumor growth.
  • - Elevated RNF121 levels correlate with poor prognosis in neuroblastoma and laryngeal cancer, suggesting it as a potential target for new cancer therapies.
View Article and Find Full Text PDF

Inherited retinal diseases (IRDs) are a rare group of eye disorders characterized by progressive dysfunction and degeneration of retinal cells. In this study, we characterized the raifteirí (raf) zebrafish, a novel model of inherited blindness, identified through an unbiased ENU mutagenesis screen. A mutation in the largest subunit of the endoplasmic reticulum membrane protein complex, emc1 was subsequently identified as the causative raf mutation.

View Article and Find Full Text PDF
Article Synopsis
  • Evidence shows whirlin has different roles in neurons, but its impact on behavior and function hasn't been fully explored.
  • A mutation in the whirlin gene, identified through a genetic screening, leads to hearing issues and increased hyperactivity in mice.
  • The study demonstrates that whirlin is crucial for both hearing and activity-related behaviors, indicating broader roles for this protein in brain function.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!