Marine sponges in the genus Ircinia are known to be good sources of secondary metabolites with biological activities. A major obstacle in the development of sponge-derived metabolites is the difficulty in ensuring an economic, sustainable supply of the metabolites. A promising strategy is the ex situ culture of sponges in closed or semiclosed aquaculture systems. In this study, the marine sponge Ircinia strobilina (order Dictyoceratida: family Irciniidae) was collected from the wild and maintained for a year in a recirculating aquaculture system. Microbiological and molecular community analyses were performed on freshly collected sponges and sponges maintained in aquaculture for 3 months and 9 months. Chemical analyses were performed on wild collected sponges and individuals maintained in aquaculture for 3 months and 1 year. Denaturing gradient gel electrophoresis was used to assess the complexity of and to monitor changes in the microbial communities associated with I. strobilina. Culture-based and molecular techniques showed an increase in the Bacteroidetes and Alpha- and Gammaproteobacteria components of the bacterial community in aquaculture. Populations affiliated with Beta- and Deltaproteobacteria, Clostridia, and Planctomycetes emerged in sponges maintained in aquaculture. The diversity of bacterial communities increased upon transfer into aquaculture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2446523PMC
http://dx.doi.org/10.1128/AEM.00454-08DOI Listing

Publication Analysis

Top Keywords

maintained aquaculture
12
marine sponge
8
sponge ircinia
8
ircinia strobilina
8
aquaculture
8
transfer aquaculture
8
analyses performed
8
collected sponges
8
sponges maintained
8
aquaculture months
8

Similar Publications

Marine fish farming served as a sustainable alternative to capture fisheries. However, it faced challenges such as disease management, water quality maintenance, and minimizing environmental impacts. Among these challenges, fungal infections are particularly concerning.

View Article and Find Full Text PDF

Floodplain forests drive fruit-eating fish diversity at the Amazon Basin-scale.

Proc Natl Acad Sci U S A

January 2025

Centre de Recherche sur la Biodiversité et l'Environnement, Université de Toulouse, Institut de Recherche pour le Développement, Institut National Polytechnique de Toulouse, Université Toulouse 3 - Paul Sabatier, Toulouse F-31062, France.

Unlike most rivers globally, nearly all lowland Amazonian rivers have unregulated flow, supporting seasonally flooded floodplain forests. Floodplain forests harbor a unique tree species assemblage adapted to flooding and specialized fauna, including fruit-eating fish that migrate seasonally into floodplains, favoring expansive floodplain areas. Frugivorous fish are forest-dependent fauna critical to forest regeneration via seed dispersal and support commercial and artisanal fisheries.

View Article and Find Full Text PDF

The electrocatalytic conversion of oxygen to hydrogen peroxide offers a promising pathway for sustainable energy production. However, the development of catalysts that are highly active, stable, and cost-effective for hydrogen peroxide synthesis remains a significant challenge. In this study, a novel polyacid-based metal-organic coordination compound (Cu-PW) was synthesized using a hydrothermal approach.

View Article and Find Full Text PDF

The toxicity of nitrite is an issue that cannot be overlooked in nitrogen pollution within aquaculture. A highly efficient bacterium capable of simultaneous nitrification and denitrification was screened from natto, and its 16S rRNA gene sequence was compared to existing records, confirming its identification as Bacillus subtilis sp. N4.

View Article and Find Full Text PDF

High cadmium (Cd) concentrations pose a threat to aquatic life globally. This study examined the efficiency of adding purslane (Portulaca oleracea L.) leaf powder (PLP) to Oreochromis niloticus diets on Cd's negative effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!