Flagellar assembly proceeds in a sequential manner, beginning at the base and concluding with the filament. A critical aspect of assembly is that gene expression is coupled to assembly. When cells transition from a nonflagellated to a flagellated state, gene expression is sequential, reflecting the manner in which the flagellum is made. A key mechanism for establishing this temporal hierarchy is the sigma(28)-FlgM checkpoint, which couples the expression of late flagellar (P(class3)) genes to the completion of the hook-basal body. In this work, we investigated the role of FliZ in coupling middle flagellar (P(class2)) gene expression to assembly in Salmonella enterica serovar Typhimurium. We demonstrate that FliZ is an FlhD(4)C(2)-dependent activator of P(class2)/middle gene expression. Our results suggest that FliZ regulates the concentration of FlhD(4)C(2) posttranslationally. We also demonstrate that FliZ functions independently of the flagellum-specific sigma factor sigma(28) and the filament-cap chaperone/FlhD(4)C(2) inhibitor FliT. Furthermore, we show that the previously described ability of sigma(28) to activate P(class2)/middle gene expression is, in fact, due to FliZ, as both are expressed from the same overlapping P(class2) and P(class3) promoters at the fliAZY locus. We conclude by discussing the role of FliZ regulation with respect to flagellar biosynthesis based on our characterization of gene expression and FliZ's role in swimming and swarming motility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2447003PMC
http://dx.doi.org/10.1128/JB.01996-07DOI Listing

Publication Analysis

Top Keywords

gene expression
28
expression
8
role fliz
8
demonstrate fliz
8
pclass2/middle gene
8
fliz
7
gene
7
flagellar
5
fliz posttranslational
4
posttranslational activator
4

Similar Publications

Most diffuse large B-cell lymphoma (DLBCL) patients treated with immunotherapies such as bispecific antibodies (BsAb) or chimeric antigen receptor (CAR) T cells fail to achieve durable treatment responses, underscoring the need for a deeper understanding of mechanisms that regulate the immune environment and response to treatment. Here, an integrative, multi-omic approach was applied to multiple large independent datasets in order to characterize DLBCL immune environments, and to define their association with tumor cell-intrinsic genomic alterations and outcomes to CD19-directed CAR T-cell and CD20 x CD3 BsAb therapies. This approach effectively segregated DLBCLs into four immune quadrants (IQ) defined by cell-of-origin and immune-related gene set expression scores.

View Article and Find Full Text PDF

Optimal embryonic development depends upon cell-signaling molecules released by the maternal reproductive tract called embryokines. Identity of specific embryokines that enhance competence of the embryo for sustained survival is largely lacking. The current objective was to evaluate effects of three putative embryokines in cattle on embryonic development to the blastocyst stage.

View Article and Find Full Text PDF

The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.

View Article and Find Full Text PDF

Chronic stress-induced cholesterol metabolism abnormalities promote ESCC tumorigenesis and predict neoadjuvant therapy response.

Proc Natl Acad Sci U S A

February 2025

Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China.

Recent studies have demonstrated that chronic stress can enhance the development of multiple human diseases, including cancer. However, the role of chronic stress in esophageal carcinogenesis and its underlying molecular mechanisms remain unclear. This study uncovered that dysregulated cholesterol metabolism significantly promotes esophageal carcinogenesis under chronic stress conditions.

View Article and Find Full Text PDF

Strigolactones regulate Bambusa multiplex sheath senescence by promoting chlorophyll degradation.

Tree Physiol

January 2025

State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Lab of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.

Culm sheaths are capable of photosynthesis and are an important class of non-leaf organs in bamboo plants. The source-sink interaction mechanism has been found to play an important role in the interaction between culm sheaths and internodes in Bambusa multiplex. Research on the regulatory mechanisms of culm sheath senescence is important for the study of internode growth, but reports in this regard are limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!