A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A spatially restricted increase in receptor mobility is involved in directional sensing during Dictyostelium discoideum chemotaxis. | LitMetric

The directed cell migration towards a chemotactic source, chemotaxis, involves three complex and interrelated processes: directional sensing, cell polarization and motility. Directional sensing allows migrating eukaryotic cells to chemotax in extremely shallow gradients (<2% across the cell body) of the chemoattractant. Although directional sensing has been observed as spatially restricted responses along the plasma membrane, our understanding of the ;compass' of the cell that controls the gradient-induced translocation of proteins during chemotactic movements is still largely lacking. Until now, the dynamical behaviour and mobility of the chemoattractant-receptor molecule has been neglected in models describing the directional sensing mechanisms. Here, we show by single-molecule microscopy an agonist-induced increase in the mobile fraction of cAMP-receptor at the leading edge of chemotacting Dictyostelium discoideum cells. The onset of receptor mobility was correlated to the uncoupling and activation of the Galpha2-protein. A finite-element simulation showed that the increase in mobile fraction of the activated receptor enabled the amplified generation of activated Gbetagamma-dimers at the leading edge of the cell, faithfully representing a primary linear amplification step in directional sensing. We propose here that modulation of the receptor mobility is directly involved in directional sensing and provides a new mechanistic basis for the primary amplification step in current theoretical models that describe directional sensing.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.030692DOI Listing

Publication Analysis

Top Keywords

directional sensing
12
spatially restricted
4
restricted increase
4
increase receptor
4
receptor mobility
4
mobility involved
4
involved directional
4
sensing dictyostelium
4
dictyostelium discoideum
4
discoideum chemotaxis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!