Although abundant ryanodine receptors (RyRs) exist in cardiomyocytes from newborn (NB) rat and despite the maturity of their single-channel properties, the RyR contribution to excitation-contraction (E-C) coupling is minimal. Immature arrangement of RyRs in the Ca(2+) release site of the sarcoplasmic reticulum and/or distant RyRs location from the sarcolemmal Ca(2+) signal could explain this quiescence. Consequently, Ca(2+) sparks and their cellular distribution were studied in NB myocytes and correlated with the formation of dyads and transverse (T) tubules. Ca(2+) sparks were recorded in fluo-4-loaded intact ventricular myocytes acutely dissociated from adult and NB rats (0-9 days old). Sparks were defined/compared in the center and periphery of the cell. Co-immunolocalization of RyRs with dihydropyridine receptors (DHPR) was used to estimate dyad formation, while the development of T tubules was studied using di-8-ANEPPS and diIC12. Our results indicate that in NB cells, Ca(2+) sparks exhibited lower amplitude (1.7+/-0.5 vs. 3.6+/-1.7 F/F(0)), shorter duration (47+/-3.2 vs. 54.1+/-3 ms), and larger width (1.7+/-0.8 vs. 1.2+/-0.4 microm) than in adult. Although no significant changes were observed in the overall frequency, central sparks increased from approximately 60% at 0-1 day to 82% at 7-9 days. While immunolocalization revealed many central release sites at 7-8 days, fluorescence labeling of the plasma membrane showed less abundant internal T tubules. This could imply that although during the first week, release sites emerge forming dyads with DHPR-containing T tubules; some of these T tubules may not be connected to the surface, explaining the RyR quiescence during E-C coupling in NB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yjmcc.2008.03.015 | DOI Listing |
JCI Insight
January 2025
Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States of America.
Obscurin is a giant protein that coordinates diverse aspects of striated muscle physiology. Obscurin immunoglobulin domains 58/59 (Ig58/59) associate with essential sarcomeric and Ca2+ cycling proteins. To explore the pathophysiological significance of Ig58/59, we generated the Obscn-ΔIg58/59 mouse model, expressing obscurin constitutively lacking Ig58/59.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Physiology, University of Arizona College of Medicine, Tucson, Arizona, USA.
Introduction: Cerebrovascular dysfunction occurs in Alzheimer's disease (AD), impairing hemodynamic regulation. Large conductance Ca-activated K channels (BK) regulate cerebrovascular reactivity and are impaired in AD. BK activity depends on intracellular Ca (Ca sparks) and nitro-oxidative post-translational modifications.
View Article and Find Full Text PDFAnatol J Cardiol
December 2024
Department of Biophysics, Faculty of Medicine, Lokman Hekim University, Ankara, Türkiye.
Background: Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are known for their benefits in conditions like cardiovascular diseases in type 2 diabetes and obesity. They also show promise for aging-related conditions with minimal side effects. However, their impact on cardiovascular risk is still debated.
View Article and Find Full Text PDFBiophys J
January 2025
Department of Physiology and Biophysics, Rush University Medical Center, Chicago, Illinois. Electronic address:
Ca blinks measure the exit of Ca from the junctional sarcoplasmic reticulum (JSR) in a cardiac myocyte during a Ca spark. Here, the relationship between experimental blink fluorescence measurements and the [Ca] in the JSR is explored using long 3D simulations of diastolic Ca release. For a fast intra-SR Ca-activated fluorophore such as Fluo-5N, we show that a simple mathematical formula relates the two for an ideal blink (i.
View Article and Find Full Text PDFBiomolecules
October 2024
School of Systems Biology, George Mason University, Fairfax, VA 22030, USA.
Previous studies have observed alterations in excitation-contraction (EC) coupling during end-stage heart failure that include action potential and calcium (Ca) transient prolongation and a reduction of the Ca transient amplitude. Underlying these phenomena are the downregulation of potassium (K) currents, downregulation of the sarcoplasmic reticulum Ca ATPase (SERCA), increase Ca sensitivity of the ryanodine receptor, and the upregulation of the sodium-calcium (Na-Ca) exchanger. However, in human heart failure (HF), debate continues about the relative contributions of the changes in calcium handling vs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!