Measurement of intracellular calcium release following agonist challenge within cells expressing the relevant membrane protein is a commonly used format to derive structure-activity relationship (SAR) data within a compound profiling assay. The Fluorometric Imaging Plate Reader (FLIPR) has become the gold standard for this purpose. FLIPR traditionally uses cells that are maintained in continuous culture for compound profiling of iterative chemistry campaigns. This supply dictates that assays can only be run on 4 of 5 weekdays, or alternative cell culture machinery is required such that plating can occur remotely at the weekend. The data reported here demonstrate that high-quality compound profiling data can be generated from the use of cryopreserved cells and that these cells can also be plated at various densities to generate equivalent data between 24 and 72 h post-plating. Hence, the authors report a method that allows data generation throughout the week and without the requirement of highly automated cell culture or continuous culture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1087057108317768 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur, 56000, Malaysia.
The third most prevalent type of cancer in the world, colorectal cancer, poses a significant treatment challenge due to the nonspecific distribution, low efficacy, and high systemic toxicity associated with chemotherapy. To overcome these limitations, a targeted drug delivery system with a high cytotoxicity against cancer cells while maintaining a minimal systemic side effects represents a promising therapeutic approach. Therefore, the aim of this study was to develop an efficient gold nanocarrier for the targeted delivery of the anticancer agent everolimus to Caco-2 cells.
View Article and Find Full Text PDFNat Prod Res
January 2025
Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil.
(L.) R. Br.
View Article and Find Full Text PDFCurr Top Med Chem
January 2025
Medicinal Chemistry Department, Theodor Bilharz Research Institute Kornaish El Nile, Warrak El-Hadar, Imbaba (P.O. 30), Giza 12411, Egypt.
Background: Research into oxidative stress, cancer, and natural products revealed promising avenues for therapeutic intervention. Natural products are considered potent pharmaceuticals in combating oxidative stress and its relationship with cancer.
Methods: This study was carried out to evaluate the chemical profile and antioxidant activities using DPPH, ABTS, Phenanthroline, Cupric, Phosphomolybdenum, FRAP, Hydroxyl, Iron chelation in vitro assays, and anticancer properties by MTT method of Cistus creticus extracts.
J Med Chem
January 2025
College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
The P2YR is activated by UDP and UDP glucose and is involved in many human inflammatory diseases. Based on the molecular docking analysis of currently reported P2YR antagonists and the crystallographic overlap study between PPTN and compound , a series of 3-substituted 5-amidobenzoate derivatives were designed, synthesized, and identified as promising P2YR antagonists. The optimal compound (methyl 3-(1-benzo[]imidazol-2-yl)-5-(2-(-tolyl) acetamido)benzoate, IC = 0.
View Article and Find Full Text PDFRSC Adv
January 2025
Institute of Chemistry, Vietnam Academy of Science and Technology Hanoi Vietnam
In this paper, a series of novel quinazoline-4(3)-one-2-carbothioamide derivatives (8a-p) were designed and synthesized the Wilgerodt-Kindler reaction between 2-methylquinazoline-4-one 10 and amines using S/DMSO as the oxidizing system. Their characteristics were confirmed by IR, NMR, HRMS spectra, and their melting point. These novel derivatives (8a-p) were evaluated for their anti-inflammatory activity by inhibiting NO production in lipopolysaccharide (LPS)-activated RAW 264.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!