Arginine vasopressin (AVP) plays an important role in renal hemodynamic alterations, water retention, and cardiac remodeling in congestive heart failure (CHF). The present study evaluated the acute and chronic effects of vasopressin V(1a) receptor subtype (V(1a)) and vasopressin V(2) receptor subtype (V(2)) antagonists on renal function and cardiac hypertrophy in rats with CHF. The effects of acute administration of SR 49059 [(2S)1-[(2R,3S)-5-chloro-3-(2-chlorophenyl)-1-(3,4-dimethoxybenzene-sulfonyl)-3-hydroxy-2,3-dihydro-1H-indole-2-carbonyl]-pyrrolidine-2-carboxamide)] (0.1 mg/kg) and SR 121463B (1-[4-(N-tert-butylcarbamoyl)-2-methoxybenzenesulfonyl]-5-ethoxy-3-spiro-[4-(2-morpholinoethoxy)cyclohexane]indol-2-one, fumarate; equatorial isomer) (0.3 mg/kg), V(1a) and V(2) antagonists, respectively, on renal function, and of chronic treatment (3.0 mg/kg/day for 7 or 28 days, via osmotic minipumps or p.o.), on water excretion and cardiac hypertrophy were studied in rats with aortocaval fistula and control rats. CHF induction increased plasma AVP (12.8 +/- 2.5 versus 32.2 +/- 8.3 pg/ml, p < 0.05). Intravenous bolus injection of SR 121463B to controls produced dramatic diuretic response (from 5.5 +/- 0.8 to 86.3 +/- 21.9 microl/min; p < 0.01). In contrast, administration of SR 49059 did not affect urine flow. Likewise, administration of SR 121463B, but not SR 49059, to rats with CHF significantly increased urinary flow rate from 20.8 +/- 6.4 to 91.6 +/- 26.5 microl/min (p < 0.01). The diuretic effects of SR 121463B were associated with a significant decline in urinary osmolality and insignificant change of Na+ excretion. In line with its acute effects, chronic administration of SR 121463B to CHF rats increased daily urinary volume 2 to 5-fold throughout the treatment period. Both SR 121463B and SR 49059 significantly reduced heart weight in CHF rats when administered for 4 weeks, but not 1 week. These results suggest that V(2) and V(1a) antagonists improve water balance and cardiac hypertrophy in CHF and might be beneficial for the treatment of water retention and cardiac remodeling in CHF.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.108.137745DOI Listing

Publication Analysis

Top Keywords

cardiac hypertrophy
16
antagonists renal
12
renal function
12
rats chf
12
vasopressin receptor
8
function cardiac
8
hypertrophy rats
8
congestive heart
8
heart failure
8
water retention
8

Similar Publications

Myocyte disarray and fibrosis are underlying pathologies of hypertrophic cardiomyopathy (HCM) caused by genetic mutations. However, the extent of their contributions has not been extensively evaluated. In this study, we investigated the effects of genetic mutations on myofiber function and fibrosis patterns in HCM.

View Article and Find Full Text PDF

TRADD-mediated pyroptosis contributes to diabetic cardiomyopathy.

Acta Pharmacol Sin

January 2025

Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, China.

Regulated cell death like pyroptosis is one vital cause of diabetic cardiomyopathy (DCM), which eventually leads to heart failure. Tumor necrosis factor (TNF) receptor-associated death domain protein (TRADD) is an adapter protein with multiple functions that participates in the pathophysiological progress of different cardiovascular disorders via regulating regulated cell death. Studies have shown that TRADD combines with receptor-interacting protein kinase 3 (RIPK3) and facilitates its activation, thereby mediating TNF-induced necroptosis.

View Article and Find Full Text PDF

SNX3 mediates heart failure by interacting with HMGB1 and subsequently facilitating its nuclear-cytoplasmic translocation.

Acta Pharmacol Sin

January 2025

National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.

Sorting nexins (SNXs) as the key regulators of sorting cargo proteins are involved in diverse diseases. SNXs can form the specific reverse vesicle transport complex (SNXs-retromer) with vacuolar protein sortings (VPSs) to sort and modulate recovery and degradation of cargo proteins. Our previous study has shown that SNX3-retromer promotes both STAT3 activation and nuclear translocation in cardiomyocytes, suggesting that SNX3 might be a critical regulator in the heart.

View Article and Find Full Text PDF

Cardiac pathology associated with hypertension and chronic kidney disease in aged cats.

J Comp Pathol

January 2025

Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK. Electronic address:

Hypertension is a common condition in older cats, often secondary to chronic kidney disease (CKD). Although the heart is one of the organs damaged by hypertension, the pathology of the feline hypertensive (HT) heart has been poorly studied. The aim of this retrospective study was to describe the gross and microscopic pathology of hearts obtained from cats at post-mortem examination and to compare cats diagnosed with hypertension with cats of similar age and kidney function for which antihypertensive treatment was not deemed clinically necessary.

View Article and Find Full Text PDF

Prognostic Implications of Cardiac Geometry in Cirrhosis: Findings From a Large Cohort.

Liver Int

February 2025

General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China.

Background And Aims: Cirrhosis is characterised by hyperdynamic circulation, which contributes to cirrhotic cardiomyopathy (CCM). However, the expert consensus on CCM did not initially include cardiac structure because of scant evidence. Therefore, this study investigated the associations of cardiac chamber geometry with mortality and CCM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!