The present work investigates the effect of phosphatidylinositol-4,5-bisphosphate (PIP(2)) on native TRPC6 channel activity in freshly dispersed rabbit mesenteric artery myocytes using patch clamp recording and co-immunoprecipitation methods. Inclusion of 100 microM diC8-PIP(2) in the patch pipette and bathing solutions, respectively, inhibited angiotensin II (Ang II)-evoked whole-cell cation currents and TRPC6 channel activity by over 90%. In inside-out patches diC8-PIP(2) also inhibited TRPC6 activity induced by the diacylglycerol analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG) with an IC(50) of 7.6 microM. Anti-PIP(2) antibodies potentiated Ang II- and OAG-evoked TRPC6 activity by about 2-fold. Depleters of tissue PIP(2) wortmannin and LY294002 stimulated TRPC6 activity, as did the polycation PIP(2) scavenger poly-L-lysine. Wortmannin reduced Ang II-evoked TRPC6 activity by over 75% but increased OAG-induced TRPC6 activity by over 50-fold. Co-immunoprecipitation studies demonstrated association between PIP(2) and TRPC6 proteins in tissue lysates. Pre-treatment with Ang II, OAG and wortmannin reduced TRPC6 association with PIP(2). These results provide for the first time compelling evidence that constitutively produced PIP(2) exerts a powerful inhibitory action on native TRPC6 channels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2538776 | PMC |
http://dx.doi.org/10.1113/jphysiol.2008.153676 | DOI Listing |
Immunotargets Ther
December 2024
Department of General Surgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, People's Republic of China.
Background: Transient receptor potential canonical 6 (TRPC6), a key member of the TRPC family, is involved in diverse physiological and pathological processes. Although previous studies have implicated TRPC6 in the progression of stomach adenocarcinoma (STAD), its precise functions and mechanisms remain unclear. Understanding TRPC6's role in STAD may provide insights into its prognostic and therapeutic potential.
View Article and Find Full Text PDFJ Ethnopharmacol
December 2024
Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Outer Ring East Road No. 232, Higher Education Mega Center, Guangzhou, 510006, China. Electronic address:
Ethnopharmacological Relevance: Guilu Erxian Jiao (GLEXJ) is a renowned traditional Chinese herbal formula used to tonify the kidney. It is employed to treat psychiatric disorders, and alleviate memory impairment, cognitive dysfunction, and behavioral disorders. Modern pharmacological studies have demonstrated GLEXJ's ability to significantly inhibit the fear response in post-traumatic stress disorder (PTSD) and facilitate the extinction of fear memory.
View Article and Find Full Text PDFInt J Biochem Cell Biol
December 2024
NIHR Respiratory BRC, Department of Respiratory Sciences, University of Leicester, Leicester, UK. Electronic address:
Idiopathic pulmonary fibrosis (IPF) is a severe lung disease affecting around 5 million people globally, with a median survival of 3-4 years. Characterized by excessive scarring of lung tissue, IPF results from the accumulation of myofibroblasts that deposit extracellular matrix (ECM), causing fibrosis. Current treatments, pirfenidone and nintedanib, slow the disease but do not stop its progression.
View Article and Find Full Text PDFElife
December 2024
Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.
The slow-intrinsic-pacemaker dopaminergic (DA) neurons originating in the ventral tegmental area (VTA) are implicated in various mood- and emotion-related disorders, such as anxiety, fear, stress and depression. Abnormal activity of projection-specific VTA DA neurons is the key factor in the development of these disorders. Here, we describe the crucial role of the NALCN and TRPC6, non-selective cation channels in mediating the subthreshold inward depolarizing current and driving the firing of action potentials of VTA DA neurons in physiological conditions.
View Article and Find Full Text PDFExp Cell Res
December 2024
State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. Electronic address:
The mechanism underlying chronic hypoxia (CH)-induced pulmonary venous remodeling remains unclear. Cell proliferation is key in vascular remodeling, and the calcium-sensing receptor (CaSR) protein contributes to CH-induced pulmonary venous smooth muscle cell (PVSMC) proliferation. In pulmonary arterial smooth muscle cells, CaSR and transient receptor potential canonical (TRPC) proteins interact, contributing to CH-induced cell proliferation via CaSR-TRPC1/6 signaling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!