Symmetric RBF classifier for nonlinear detection in multiple-antenna-aided systems.

IEEE Trans Neural Netw

Communication Research Group, School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK.

Published: May 2008

In this paper, we propose a powerful symmetric radial basis function (RBF) classifier for nonlinear detection in the so-called "overloaded" multiple-antenna-aided communication systems. By exploiting the inherent symmetry property of the optimal Bayesian detector, the proposed symmetric RBF classifier is capable of approaching the optimal classification performance using noisy training data. The classifier construction process is robust to the choice of the RBF width and is computationally efficient. The proposed solution is capable of providing a signal-to-noise ratio (SNR) gain in excess of 8 dB against the powerful linear minimum bit error rate (BER) benchmark, when supporting four users with the aid of two receive antennas or seven users with four receive antenna elements.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNN.2007.911745DOI Listing

Publication Analysis

Top Keywords

rbf classifier
12
symmetric rbf
8
classifier nonlinear
8
nonlinear detection
8
classifier
4
detection multiple-antenna-aided
4
multiple-antenna-aided systems
4
systems paper
4
paper propose
4
propose powerful
4

Similar Publications

Study on the Impact of LDA Preprocessing on Pig Face Identification with SVM.

Animals (Basel)

January 2025

College of Information Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China.

In this study, the implementation of traditional machine learning models in the intelligent management of swine is explored, focusing on the impact of LDA preprocessing on pig facial recognition using an SVM. Through experimental analysis, the kernel functions for two testing protocols, one utilizing an SVM exclusively and the other employing a combination of LDA and an SVM, were identified as polynomial and RBF, both with coefficients of 0.03.

View Article and Find Full Text PDF

Unlabelled: Due to the increasing number of people working at computers in professional settings, the incidence of lumbar disc herniation is increasing.

Background/objectives: The early diagnosis and treatment of lumbar disc herniation is much more likely to yield favorable results, allowing the hernia to be treated before it develops further. The aim of this study was to classify lumbar disc herniations in a computer-aided, fully automated manner using magnetic resonance images (MRIs).

View Article and Find Full Text PDF

With the advancement of the Internet, social media platforms have gradually become powerful in spreading crisis-related content. Identifying informative tweets associated with natural disasters is beneficial for the rescue operation. When faced with massive text data, choosing the pivotal features, reducing the calculation expense, and increasing the model classification performance is a significant challenge.

View Article and Find Full Text PDF

Background A minority of patients receiving stereotactic body radiation therapy (SBRT) for non-small cell lung cancer (NSCLC) are not good responders. Radiomic features can be used to generate predictive algorithms and biomarkers that can determine treatment outcomes and stratify patients to their therapeutic options. This study investigated and attempted to validate the radiomic and clinical features obtained from early-stage and oligometastatic NSCLC patients who underwent SBRT, to predict local response.

View Article and Find Full Text PDF

This paper introduces a novel methodology for evaluating communication performance in rotating electric machines using Received Signal Strength Indication (RSSI) measurements coupled with artificial intelligence. The proposed approach focuses on assessing the quality of wireless signals in the complex, dynamic environment inside these machines, where factors like reflections, metallic surfaces, and rotational movements can significantly impact communication. RSSI is used as a key parameter to monitor real-time signal behavior, enabling a detailed analysis of communication reliability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!