A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mass-spectrometric monitoring of the thermally induced decomposition of trimethylgallium, tris(tert-butyl)gallium, and triethylantimony at low pressure conditions. | LitMetric

The thermal decomposition of trimethylgallium (GaMe(3)), tris(tert-butyl)gallium (Ga(t)Bu(3)) and triethylantimony (SbEt(3)) was investigated in a tubular hot-wall reactor coupled with a molecular-beam sampling mass spectrometer, and decomposition mechanisms were proposed. The obtained results confirm the predominance of the surface reactions and reveal that the radical decomposition path of Ga(t)Bu(3) and SbEt(3), responsible for the formation of butane and ethane respectively, is restricted to a narrow temperature range in contrast to the molecular route that is responsible for the formation of the corresponding alkenes. GaMe(3) decomposes above 480 degrees C, forming essentially methane and also ethane to a lesser extent, whereas Ga(t)Bu(3) decomposes starting 260 degrees C to form predominantly i-butane and i-butene as major species. The decomposition of SbEt(3) starts at 400 degrees C and forms n-butane, ethane, and ethene. The selectivity to n-butane increases with the thermolysis temperature. The resulting activation energies of the relevant decomposition paths show good agreement with those among them that have been measured before by temperature-programmed desorption techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jasms.2008.04.015DOI Listing

Publication Analysis

Top Keywords

decomposition trimethylgallium
8
responsible formation
8
decomposition
6
mass-spectrometric monitoring
4
monitoring thermally
4
thermally induced
4
induced decomposition
4
trimethylgallium tristert-butylgallium
4
tristert-butylgallium triethylantimony
4
triethylantimony low
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!