Excitation function for 63Cu(n,p)63Ni reaction in neutron energy range up to 15 MeV.

Appl Radiat Isot

Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan.

Published: October 2008

The excitation function for the (63)Cu(n,p)(63)Ni reaction has been measured by activation method using the 4.5 MV Dynamitron accelerator of the Fast Neutron Laboratory of Tohoku University. Copper plates and hollow spherical copper shells were irradiated by neutrons of various energy up to 14.9 MeV produced by the T(p,n), D(d,n), and T(d,n) reactions. The (63)Ni produced in the irradiated copper target was chemically separated. The beta-rays emitted from the extracted (63)Ni were measured by a liquid scintillation method. The cross sections obtained were compared with the evaluated data files of JENDL-3.3, ENDF/B-VI and FENDL/A-2.0. Consequently, it is found that FENDL/A-2.0 is consistent with our experimental data in the energy range studied in this work. The effect of proton shell appeared in the excitation function obtained is also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2008.03.011DOI Listing

Publication Analysis

Top Keywords

excitation function
12
function 63cunp63ni
8
63cunp63ni reaction
8
energy range
8
reaction neutron
4
neutron energy
4
range mev
4
mev excitation
4
reaction measured
4
measured activation
4

Similar Publications

Arrhythmogenic calmodulin variants D131E and Q135P disrupt interaction with the L-type voltage-gated Ca channel (Ca1.2) and reduce Ca-dependent inactivation.

Acta Physiol (Oxf)

February 2025

Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.

Aim: Long QT syndrome (LQTS) and catecholaminergic polymorphism ventricular tachycardia (CPVT) are inherited cardiac disorders often caused by mutations in ion channels. These arrhythmia syndromes have recently been associated with calmodulin (CaM) variants. Here, we investigate the impact of the arrhythmogenic variants D131E and Q135P on CaM's structure-function relationship.

View Article and Find Full Text PDF

A SPR aptamer sensor for mercury based on AuNPs@NaYF:Yb,Tm,Gd upconversion luminescent nanoparticles.

Anal Methods

November 2017

Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China.

A new aptamer-based surface plasmon resonance (SPR) system has been designed to detect Hg that utilizes near-infrared (NIR)-to-NIR gold nanoparticle coated NaYF:Yb,Tm,Gd up-conversion nanoparticles (AuNPs@NaYF:Yb,Tm,Gd UCNPs) as probes. The AuNPs@NaYF:Yb,Tm,Gd UCNPs were prepared and excited by near-infrared light (980 nm) which emitted at a near-infrared wavelength (808 nm) using an inexpensive infrared continuous wave laser diode. The AuNPs@NaYF:Yb,Tm,Gd UCNPs were conjugated with Hg aptamers.

View Article and Find Full Text PDF

Sarcopenia, the pathological age-related loss of muscle mass and strength, contributes to physical decline, frailty, and diminished healthspan. The impact of sarcopenia is expected to rise as the aging population grows, and treatments remain limited. Therefore, novel approaches for enhancing physical function and strength in older adults are desperately needed.

View Article and Find Full Text PDF

Interoception broadly refers to awareness of one's internal milieu. Although the importance of the body-to-brain communication that underlies interoception is implicit, the vagal afferent signalling and corresponding brain circuits that shape perception of the viscera are not entirely clear. Here, we use mice to parse neural circuits subserving interoception of the heart and gut.

View Article and Find Full Text PDF

Aggregation control of anionic pentamethine cyanine enabling excitation wavelength selective NIR-II fluorescence imaging-guided photodynamic therapy.

Nat Commun

January 2025

Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (HUST), Wuhan, China.

Near-infrared (NIR)-II fluorescence imaging-guided photodynamic therapy (PDT) has shown great potential for precise diagnosis and treatment of tumors in deep tissues; however, its performance is severely limited by the undesired aggregation of photosensitizers and the competitive relationship between fluorescence emission and reactive oxygen species (ROS) generation. Herein, we report an example of an anionic pentamethine cyanine (C5T) photosensitizer for high-performance NIR-II fluorescence imaging-guided PDT. Through the counterion engineering approach, a triphenylphosphine cation (Pco) modified with oligoethylene glycol chain is synthesized and adopted as the counterion of C5T, which can effectively suppress the excessive and disordered aggregation of the resulting C5T-Pco by optimizing the dye amphipathicity and enhancing the cyanine-counterion interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!