The catalase or catalase-peroxidase activity commonly exists in many pathogens and plays an important role in resisting the oxidative burst of phagocytes helping the pathogen persistently colonize in the host. Yersinia pestis is a facultative pathogen and the causative agent of plague. KatY has been identified as a thermosensing antigen with modest catalase activity in this pathogen. Here Y. pestis KatA and KatY were experimentally confirmed as a monofunctional catalase and bifunctional catalase-peroxidase, respectively. Their expression induced by H2O2 was proven to be mediated by the oxidative regulator, OxyR. Expression of KatA changed with growth phases and was crucial to its traditional physiological role in protecting Y. pestis cells against toxicity of exogenous H2O2. KatY was regulated by temperature and H2O2, two major elements of phagolysosomal microenvironments. Consistent with the above results, gene expression of katY increased significantly during intracellular growth of Y. pestis compared with that in vitro growth. However, a DeltakatY mutant was fully virulent to mice, suggesting that KatY is not required for Y. pestis virulence.

Download full-text PDF

Source
http://dx.doi.org/10.1089/dna.2007.0657DOI Listing

Publication Analysis

Top Keywords

kata katy
8
yersinia pestis
8
katy
6
pestis
6
physiological regulatory
4
regulatory characterization
4
characterization kata
4
katy yersinia
4
pestis catalase
4
catalase catalase-peroxidase
4

Similar Publications

Pathogenic bacteria, such as Yersinia pseudotuberculosis encounter reactive oxygen species (ROS) as one of the first lines of defense in the mammalian host. In return, the bacteria react by mounting an oxidative stress response. Previous global RNA structure probing studies provided evidence for temperature-modulated RNA structures in the 5'-untranslated region (5'-UTR) of various oxidative stress response transcripts, suggesting that opening of these RNA thermometer (RNAT) structures at host-body temperature relieves translational repression.

View Article and Find Full Text PDF

Physiological and regulatory characterization of KatA and KatY in Yersinia pestis.

DNA Cell Biol

August 2008

State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China.

The catalase or catalase-peroxidase activity commonly exists in many pathogens and plays an important role in resisting the oxidative burst of phagocytes helping the pathogen persistently colonize in the host. Yersinia pestis is a facultative pathogen and the causative agent of plague. KatY has been identified as a thermosensing antigen with modest catalase activity in this pathogen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!