Fibrin scaffold promotes adenoviral gene transfer and controlled vector delivery.

J Biomed Mater Res A

National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Galway, Ireland.

Published: June 2009

Gene therapy using adenoviral vectors in tissue regeneration is hindered by a short duration of transgene expression. It is hypothesized that a fibrin scaffold will enhance delivery of the adenovirus to a wound site, precluding the need for high repeated doses. It was aimed to analyze whether fibrin could deliver a low single dose of viral vector to a wound site, without compromising transfection efficiency. Fibrin scaffold containing adenovirus encoding beta-galactosidase, fibrin alone, adenovirus alone, and no treatment groups were applied to a rabbit ear ulcer model. beta-Galactosidase transgene expression was measured at 7 and 14 days. Transgene expression was enhanced in the fibrin containing adenovirus group at 7 days. By 14 days, there was low expression and no difference between groups. Stereological methods assessing wound healing aimed to determine whether the adenovirus capsid elicited an unfavorable inflammatory response and whether fibrin's beneficial properties were altered by addition of adenovirus. The fibrin adenovirus group showed a wound-healing response similar to fibrin alone, showing maximum cellularity and angiogenesis at 7 days. By 14 days, cellularity and angiogenesis subsided, and this effect was not inhibited by the presence of adenovirus. Adenovirus alone did not cause an unfavorable inflammatory response. It is concluded the fibrin aids in the delivery of a low-dose viral vector, thereby avoiding a chronic inflammatory response, and allowing superior transfection than viral vector alone. This has wide-ranging implications on the use of viral vectors in tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.32039DOI Listing

Publication Analysis

Top Keywords

fibrin scaffold
12
transgene expression
12
viral vector
12
fibrin adenovirus
12
inflammatory response
12
fibrin
9
adenovirus
9
vectors tissue
8
wound site
8
adenovirus group
8

Similar Publications

Unlabelled: A 3D in vitro model of innervated skin would be a useful tool in dermatological research to study the effect of different chemicals and compounds on the sensory properties of skin. Current innervated skin models are limited in composition and often composed of ex vivo skin explants and/or animal-derived material. In this study, our aim was to develop a human innervated skin model with a better biomimicry composition for in vitro research.

View Article and Find Full Text PDF

Large skeletal muscle injuries such as volumetric muscle loss (VML) disrupt native tissue structures, including biophysical and biochemical signaling cues that promote the regeneration of functional skeletal muscle. Various biofabrication strategies have been developed to create engineered skeletal muscle constructs that mimic native matrix and cellular microenvironments to enhance muscle regeneration; however, there remains a need to create scalable engineered tissues that provide mechanical stability as well as structural and spatiotemporal signaling cues to promote cell-mediated regeneration of contractile skeletal muscle. We describe a novel strategy for bioprinting multifunctional myoblast-loaded fibrin microthreads (myothreads) that recapitulate the cellular microniches to drive myogenesis and aligned myotube formation.

View Article and Find Full Text PDF

How to Deal with Pulpitis: An Overview of New Approaches.

Dent J (Basel)

January 2025

Department of Conservative Dentistry with Endodontics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-902 Bytom, Poland.

Traditional root canal therapy (RCT) effectively removes diseased or necrotic pulp tissue and replaces it with inorganic materials. Regenerative endodontics is an alternative to conventional RCT by using biologically based approaches to restore the pulp-dentin complex. This review explores emerging techniques, including autogenic and allogenic pulp transplantation, platelet-rich fibrin, human amniotic membrane scaffolds, specialized pro-resolving mediators, nanofibrous and bioceramic scaffolds, injectable hydrogels, dentin matrix proteins, and cell-homing strategies.

View Article and Find Full Text PDF

The 3D printing of human tissue constructs requires carefully designed bioinks to support the growth and function of cells. Here it is shown that an additional parameter is how drug-releasing microparticles affect the material properties of the scaffold. A microfluidic platform is used to create all-trans retinoic acid (atRA) polycaprolactone (PCL) microparticles with a high encapsulation efficiency (85.

View Article and Find Full Text PDF

A meniscus injury is a common cartilage disease of the knee joint. Despite the availability of various methods for the treatment of meniscal injuries, the poor regenerative capacity of the meniscus often necessitates resection, leading to the accelerated progression of osteoarthritis. Advances in tissue engineering have introduced meniscal tissue engineering as a potential treatment option.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!