In this work, nanostructured HA ceramics with dense microstructure were prepared by microwave sintering process and their microstructures were compared with the case of conventional sintering. Commercially obtained HA powder with Ca/P molar ratio of 1.67 was used as a starting material. The powder of granular type consists of nanocrystalline particles of 20-30 nm in size. The as-received HA powder or the powder calcined at 800 degrees C, followed by ball-milling was used for the preparation of HA disks. Microwave sintering was conducted at 1200 degrees C for 5 min with a heating rate of 50 degrees C/min. HA ceramics with the sintered densities of approximately 96-97% of the theoretical were obtained. XRD analysis showed that all detectable peaks are identical to pure hydroxyapatite. The HA sintered body made of calcined and ball-milled powder showed uniform microstructure with grain size of 300-400 nm and with finer sub-grains of 30-40 nm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2008.d245 | DOI Listing |
Polymers (Basel)
December 2024
Department of Prosthodontics, Medical University of Warsaw, 02-097 Warsaw, Poland.
Incorporating nanoparticles into denture materials shows promise for the prevention of denture-associated fungal infections. This study investigates the antifungal properties of acrylic modified with microwave-sintered ZnO-Ag nanoparticles. ZnO-Ag nanoparticles (1% and 2.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
NbO-type ceramics (where = Mg, Ca, Mn, Co, Ni, Zn and = Ti, Zr) are essential for satellite communication and mobile base stations due to their medium relative permittivity () and high quality factor ( × ). Although ZnTiZrNbO ceramic exhibits impressive microwave dielectric properties, including an of 29.75, a × of 107,303 GHz, and a of -24.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China.
Ceramic armor protection with complex shapes is limited by the difficult molding or machining processing, and 3D printing technology provides a feasible method for complex-shaped ceramics. In this study, ZrO ceramics were manufactured by 3D printing accompanied with microwave sintering. In 3D printing, the formula of photosensitive resin was optimized by controlling the content of polyurethane acrylic (PUA) as oligomer, and the photosensitive resin with 50% PUA showed excellent curing performance with a small volume shrinkage of 4.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
School of Mechanical and Mining Engineering, University of Queensland, Brisbane, QLD4072, Australia.
The significance of biomedical applications of Ti alloys is best emphasized by their widespread utilization as implantable materials, such as internal supports and bone replacements. Ti alloys are sensitive to fretting wear, which leads to the early failure of Ti implants. Improved wear resistance of such implants is essential to ensure a prolonged implant life.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Guangxi Universities Key Laboratory of Non-ferrous Metal Oxide Electronic Functional Materials and Devices, College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China.
A microwave dielectric ceramic based on lithium aluminum silicate (LiAlSiO) with ultralow permittivity was synthesized using the traditional solid-state reaction technique, and its dielectric characteristics at microwave frequencies are presented. The nominal LiAlSiO ceramic exhibited a relative permittivity of 3.95.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!