The role played by B cells in cancer biology is complex and somewhat controversial. Previous studies using genetically engineered mice suggest that B cells may be immunosuppressive and inhibit tumor rejection. However, the effects of B-cell depletion employing an antibody in mice bearing solid tumors has not been tested owing to difficulties in making an effective antimouse CD20 antibody (similar to rituximab). Injection of a newly developed antimouse CD20 antibody was effective in depleting circulating B cells from blood and lymph nodes, although depletion was less complete in the spleen. B-cell depletion slowed the growth of new solid tumors (not expressing CD20) and retarded the growth of established tumors but did not induce tumor regression. However, when the antibody was combined with an active immunotherapy approach using an adenovirus vaccine expressing the human papilloma virus-E7 gene (Ad.E7) in mice bearing TC1 tumors (murine lung cancer cells expressing human papilloma virus-E7), we noted enhanced antitumor effects and increased numbers of tetramer+/CD8+ T cells within the spleens and activated CD8+ T cells within tumors. B-cell depletion using an anti-CD20 antibody was thus effective in retarding tumor growth in multiple solid tumor models and augmenting immunotherapy in a tumor vaccine model. These studies raise the possibility that B-cell depletion may be a useful adjunct in human immunotherapy trials.

Download full-text PDF

Source
http://dx.doi.org/10.1097/CJI.0b013e31816d1d6aDOI Listing

Publication Analysis

Top Keywords

b-cell depletion
20
depletion anti-cd20
8
anti-cd20 antibody
8
tumor models
8
mice bearing
8
solid tumors
8
antimouse cd20
8
cd20 antibody
8
antibody effective
8
expressing human
8

Similar Publications

INhibitor of Growth (ING1-5) proteins are epigenetic readers that target histone acetyltransferase (HAT) or histone deacetylase (HDAC) complexes to the H3K4Me3 mark of active transcription. ING5 targets Moz/Morf and HBO1 HAT complexes that alter acetylation of H3 and H4 core histones, affecting gene expression. Previous experiments in vitro indicated that ING5 functions to maintain stem cell character in normal and in cancer stem cells.

View Article and Find Full Text PDF

The role of B cells in the pathogenesis of type 1 diabetes.

Front Immunol

January 2025

Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.

Type 1 diabetes (T1D) is a metabolic disorder caused by a complete lack of insulin, primarily manifested by hyperglycemia. The mechanisms underlying the onset of T1D are complex, involving genetics, environment, and various unknown factors, leading to the infiltration of various immune components into the islets. Besides T cells, B cells are now considered important contributors to the pathogenesis of T1D, according to recent studies.

View Article and Find Full Text PDF

Plague, caused by , poses a public health threat not only due to sporadic outbreaks across the globe but also due to its potential as a biothreat agent. Ironically, among the seven deadliest pandemics in global history, three were caused by . Pneumonic plague, the more contagious and severe form of the disease, is difficult to contain, requiring either prophylactic antibiotic treatment or vaccination.

View Article and Find Full Text PDF

Tertiary lymphoid structures (TLS) are organized immune cell aggregates that arise in chronic inflammatory conditions. In cancer, TLS are associated with better prognosis and enhanced response to immunotherapy, making these structures attractive therapeutic targets. However, the mechanisms regulating TLS formation and maintenance in cancer are incompletely understood.

View Article and Find Full Text PDF

Introduction: Although rituximab is approved for several autoimmune diseases, no formal dose finding studies have been conducted. The amount of CD20+ cells differs significantly between autoimmune diseases and B-cell malignancies. Hence, dose requirements of anti-CD20 therapies may differ accordingly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!