What is the relationship between retinotopy and object selectivity in human lateral occipital (LO) cortex? We used functional magnetic resonance imaging (fMRI) to examine sensitivity to retinal position and category in LO, an object-selective region positioned posterior to MT along the lateral cortical surface. Six subjects participated in phase-encoded retinotopic mapping experiments as well as block-design experiments in which objects from six different categories were presented at six distinct positions in the visual field. We found substantial position modulation in LO using standard nonobject retinotopic mapping stimuli; this modulation extended beyond the boundaries of visual field maps LO-1 and LO-2. Further, LO showed a pronounced lower visual field bias: more LO voxels represented the lower contralateral visual field, and the mean LO response was higher to objects presented below fixation than above fixation. However, eccentricity effects produced by retinotopic mapping stimuli and objects differed. Whereas LO voxels preferred a range of eccentricities lying mostly outside the fovea in the retinotopic mapping experiment, LO responses were strongest to foveally presented objects. Finally, we found a stronger effect of position than category on both the mean LO response, as well as the distributed response across voxels. Overall these results demonstrate that retinal position exhibits strong effects on neural response in LO and indicates that these position effects may be explained by retinotopic organization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2493478 | PMC |
http://dx.doi.org/10.1152/jn.01383.2007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!