Background And Aims: Halophytic species often show seed dimorphism, where seed morphs produced by a single individual may differ in germination characteristics. Particular morphs are adapted to different windows of opportunity for germination in the seasonally fluctuating and heterogeneous salt-marsh environment. The possibility that plants derived from the two morphs may also differ physiologically has not been investigated previously.
Methods: Experiments were designed to investigate the germination characteristics of black and brown seed morphs of Suaeda splendens, an annual, C(4) shrub of non-tidal, saline steppes. The resulting seedlings were transferred to hydroponic culture to investigate their growth and photosynthetic (PSII photochemistry and gas exchange) responses to salinity.
Key Results: Black seeds germinated at low salinity but were particularly sensitive to increasing salt concentrations, and strongly inhibited by light. Brown seeds were unaffected by light, able to germinate at higher salinities and generally germinated more rapidly. Ungerminated black seeds maintained viability for longer than brown ones, particularly at high salinity. Seedlings derived from both seed morphs grew well at high salinity (400 mol m(-3) NaCl). However, seedlings derived from brown seeds performed poorly at low salinity, as reflected in relative growth rate, numbers of branches produced, F(v)/F(m) and net rate of CO(2) assimilation.
Conclusions: The seeds most likely to germinate at high salinity in the Mediterranean summer (brown ones) retain a requirement for higher salinity as seedlings that might be of adaptive value. On the other hand, black seeds, which are likely to delay germination until lower salinity prevails, produce seedlings that are less sensitive to salinity. It is not clear why performance at low salinity, later in the life cycle, might have been sacrificed by the brown seeds, to achieve higher fitness at the germination stage under high salinity. Analyses of adaptive syndromes associated with seed dimorphism may need to take account of differences over the entire life cycle, rather than just at the germination stage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712427 | PMC |
http://dx.doi.org/10.1093/aob/mcn069 | DOI Listing |
Sensors (Basel)
December 2024
CommSensLab-UPC, Universitat Politècnica de Catalunya-BarcelonaTech, 08034 Barcelona, Spain.
Interferometric radiometers operating at L-band, such as ESA's SMOS mission, enable crucial Earth observations providing high-resolution measurements of soil moisture, ocean salinity, and other geophysical parameters. However, the increasing electromagnetic spectrum utilization has led to significant Radio Frequency Interference (RFI) challenges, particularly critical given the sensors' fine temperature resolution requirements of less than 1 K. This work presents the hardware implementation of an advanced RFI detection and mitigation algorithm specifically designed for interferometric radiometers, targeting future L-band missions.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Petroleum and Energy Engineering, School of Science and Engineering, The American University in Cairo, New Cairo 11835, Egypt.
One of the most challenging aspects of manipulating the flow of fluids in subsurfaces is to control their flow direction and flow behavior. This can be especially challenging for compressible fluids, such as CO, and for multiphase flow, including both water and carbon dioxide (CO). This research studies the ability of two crosslinked polymers, including hydrolyzed polyacrylamide and acrylic acid/hydrolyzed polyacrylamide crosslinked polymers, to reduce the permeability of both CO and formation water using different salinities and permeability values and in the presence of crude oil under different injection rates.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
L., (pitaya) is an important tropical fruit crop, and faces significant challenges from soil salinity and heavy metal toxicity. This study explores the role of melatonin (M) in enhancing stress tolerance in pitaya against salinity (S) and copper (Cu) toxicity, both individually and in combination (SCu).
View Article and Find Full Text PDFPlants (Basel)
December 2024
School of Life Sciences, Hebei University, Baoding 071002, China.
Soil salinization severely affects the quality and yield of maize. As a C4 plant with high efficiency in utilizing light and carbon dioxide, maize ( L.) is one of the most important crops worldwide.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Agronomy College, Jinlin Agricultural University, Changchun 130118, China.
Straw return plays a vital role in crop yield and sustainable agriculture. Extensive research has focused on the potential to enhance soil fertility and crop yield through straw return. However, the potential impacts of straw return on saline-sodic soils have been relatively neglected due to the unfavorable characteristics of saline-sodic soils, such as high salinity, poor structure, and low nutrient contents, which are not conducive to crop growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!