This work discusses the implementation of incremental hidden Markov model (HMM) training methods for electrocardiogram (ECG) analysis. The HMMs are used to model the ECG signal as a sequence of connected elementary waveforms. Moreover, an adaptation process is implemented to adapt the HMMs to the ECG signal of a particular individual. The adaptation training strategy is based on incremental versions of the expectation-maximization, segmental k-means and Bayesian approaches. Performance of the training methods was assessed through experiments considering the QT and ST-T databases. The results obtained show that the incremental training improves beat segmentation and ischemia detection performance with the advantage of low computational effort.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2008.03.006 | DOI Listing |
JMIR Cardio
January 2025
School of Life Science and Technology, University of Electronic Science and Technology of China, Research Building C348A, 3rd Fl, Chengdu, 611731, China, 86 18030493605.
Background: Hypertension is a leading cause of cardiovascular disease and premature death worldwide, and it puts a heavy burden on the healthcare system. Therefore, it is very important to detect and evaluate hypertension and related cardiovascular events to enable early prevention, detection, and management. Hypertension can be detected in a timely manner with cardiac signals, such as through an electrocardiogram (ECG) and photoplethysmogram (PPG) , which can be observed via wearable sensors.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Institute of Artificial Intelligence in Sports, Capital University of Physical Education and Sports, Beijing 100191, China.
This study investigates mental fatigue in sports activities by leveraging deep learning techniques, deviating from the conventional use of heart rate variability (HRV) feature analysis found in previous research. The study utilizes a hybrid deep neural network model, which integrates Residual Networks (ResNet) and Bidirectional Long Short-Term Memory (Bi-LSTM) for feature extraction, and a transformer for feature fusion. The model achieves an impressive accuracy of 95.
View Article and Find Full Text PDFSensors (Basel)
January 2025
CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050, China.
Generally, the electrocardiography (ECG) system plays an important role in preventing and diagnosing heart diseases. To further improve the amenity and convenience of using an ECG system, we built a customized capacitive electrocardiography (cECG) system with one wet electrode, sixteen non-contact electrodes, two ADS1299 chips, and one STM32F303-based microcontroller unit (MCU). This new cECG system could acquire, save, and display the ECG data in real time.
View Article and Find Full Text PDFSci Rep
January 2025
School of Computer Science and Engineering, Changchun University of Technology, Changchun, 130102, People's Republic of China.
Atrial fibrillation (AF) is a common arrhythmia disease with a higher incidence rate. The diagnosis of AF is time-consuming. Although many ECG classification models have been proposed to assist in AF detection, they are prone to misclassifying indistinguishable noise signals, and the context information of long-term signals is also ignored, which impacts the performance of AF detection.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Department of Electrical Engineering and Information Technology (DIETI), University of Naples Federico II, 80125 Naples, Italy.
Diabetes is a chronic condition, and traditional monitoring methods are invasive, significantly reducing the quality of life of the patients. This study proposes the design of an innovative system based on a microcontroller that performs real-time ECG acquisition and evaluates the presence of diabetes using an Edge-AI solution. A spectrogram-based preprocessing method is combined with a 1-Dimensional Convolutional Neural Network (1D-CNN) to analyze the ECG signals directly on the device.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!